
Can Nearest Neighbor Searching be Simple and

Always Fast?

Victor Alvarez1⋆, David G. Kirkpatrick2, and Raimund Seidel3

1 Fachrichtung Informatik, Universität des Saarlandes, alvarez@cs.uni-saarland.de
2 Department of Computer Science, University of British Columbia, kirk@cs.ubc.ca
3 Fachrichtung Informatik, Universität des Saarlandes, rseidel@cs.uni-saarland.de

Abstract. Nearest Neighbor Searching, i.e. determining from a set S of
n sites in the plane the one that is closest to a given query point q, is a
classical problem in computational geometry. Fast theoretical solutions
are known, e.g. point location in the Voronoi Diagram of S, or specialized
structures such as so-called Delaunay hierarchies. However, practitioners
tend to deem these solutions as too complicated or computationally too
costly to be actually useful.

Recently in ALENEX 2010 Birn et al. proposed a simple and practical
randomized solution. They reported encouraging experimental results
and presented a partial performance analysis. They argued that in many
cases their method achieves logarithmic expected query time but they
also noted that in some cases linear expected query time is incurred.
They raised the question whether some variant of their approach can
achieve logarithmic expected query time in all cases.

The approach of Birn et al. derives its simplicity mostly from the fact
that it applies only one simple type of geometric predicate: which one of
two sites in S is closer to the query point q. In this paper we show that
any method for planar nearest neighbor searching that relies just on this
one type of geometric predicate can be forced to make at least n−1 such
predicate evaluations during a worst case query.

1 Introduction

Nearest Neighbor Searching is a classical problem in computational geometry.
In the simplest non-trivial case it asks to preprocess a set S of n sites in the
plane so that for any query point q the site in S that is closest to q can be de-
termined quickly. The problem appears already in Shamos’ 1975 seminal paper
on “Geometric Complexity” [9]. Already there the problem is reduced to point
location in the Voronoi diagram of S, which was then solved in logarithmic time,
although using quadratic space, by what is now commonly known as the Dobkin-
Lipton slab method. Of course later on various logarithmic time, linear space
methods for planar point location were proposed, e.g. [6, 4], providing a solution
to the Nearest Neighbor Searching problem that was completely satisfactory

⋆ Partially supported by CONACYT-DAAD of México.

and asymptotically optimal from a theoretical point of view. However, practi-
tioners have considered these solution too complicated or the constants hidden
in the asymptotics too large and have frequently employed solutions based on
kd-trees [1, 8] that do not guarantee optimal worst case performance but appear
to be very fast in practice.

Recently Birn et al. [2] proposed a new randomized method for Nearest
Neighbor Searching that is simple and elegant and appears to be fast in prac-
tice in many cases. The method does not rely on a straightforward reduction
of Nearest Neighbor Searching to planar point location. Birn et al. presented
an analysis showing that under certain plausible circumstances their method
achieves logarithmic expected query time. However they also noted that in some
circumstances their method incurs linear expected query time. They also re-
ported on some attempts to modify their approach to achieve logarithmic query
time in all cases, while maintaining simplicity and practicality.

Our paper shows that such attempts must be futile unless additional types of
geometric predicates are employed or the input is restricted in some form. The
method of Birn et al. derives some of its simplicity from the fact that they use
only one type of geometric predicate: which of the two sites a, b ∈ S is closer
to the query point q? Or, in other words, where does q lie in relation to the
perpendicular bisector La,b of sites a and b.

In this paper we consider the problem of Nearest Neighbor searching under
the condition that the only geometric predicates used are such tests against
perpendicular bisectors between sites, let us call them bisector tests. Note that
all the fast planar point location methods when applied to Voronoi diagrams use
besides such bisector tests (which typically are just tests against Voronoi edges)
also some other tests, typically how a query point lies in relation to a vertical or
horizontal line through a Voronoi vertex.

Is it possible to achieve fast Nearest Neighbor Searching by just using bisector
tests? At first you are inclined to answer no: consider a set S of n sites with one
site having a Voronoi region Va with n−1 edges. Testing whether a query point q
is contained in this region seems to require a test against each of its n− 1 edges.
But on further thought you notice that Va can be crossed by many bisectors
and containment of q in Va could perhaps be certified by relatively few tests of
q against such bisectors.

In this paper we show that this is in general not the case.

Theorem 1. There is a set S of n sites in the plane so that any method for
Nearest Neighbor Search in S that relies exclusively on bisector tests (i.e. testing
the location of the query point against the perpendicular bisector between two
sites a, b ∈ S) can be forced to use n− 1 such tests in the worst case.

At first sight this theorem seems to convey only a negative message: With
bisector tests alone you cannot do guaranteed fast Nearest Neighbor Searching.
But there is also a positive take to this, namely advice to the algorithm designer:
You want to do guaranteed fast Nearest Neighbor Searching? Then you better
use other geometric predicates besides bisector tests, or — your algorithm or its
analysis should assume small coordinate representations for the sites and must

exploit this assumption. The latter alternative derives from the fact that the set
of sites S constructed in the proof of Theorem 1 has exponential spread, i.e. the
ratio of smallest and largest inter-site distance in S is exponential in n. This
exponential behavior does not seem to be a fluke of our method but in some
sense seems inherent in such a lower bound construction.

2 Preliminaries

All of the following will be set in the plane R
2. By comparing a (query) point

q against a (test) line L we mean determining whether q lies on L or, if not,
which of the two open halfplanes bounded by L contains q. We will denote the
halfplane that contains q by L[q]. We will use the expression “testing q against
L” synonymously with “comparing q against L.”

Let P be a convex polygon with n edges and let T be a finite set of lines.
We are interested in the computational complexity of methods that ascertain
containment of a query point q in polygon P by just comparing q against testlines
in T . We will measure this complexity only in terms of number of comparisons
of the query point against lines in T . We will completely ignore all other costs
of querying, all costs incurred by preprocessing, and also all space issues.

Let us consider a few examples: If T consists of all lines that support edges
of P , then determining whether q ∈ P can be achieved by comparing q against
each line in T . If one of these comparisons is omitted, say the one against the line
that supports edge e, then you cannot be sure of actual containment in P since
a query point q′ close to edge e but outside P would show the same comparison
outcomes as a point q close to edge e but inside P . If, on the other hand, T
consists of all lines through pairs of vertices of P then for any query point q only
log2 n + O(1) comparisons against lines in T will suffice to determine whether
q ∈ P or not – essentially you just need to perform a binary search of q among
all lines in T that contain the same vertex.

We want to say that a test set T is k-bad for polygon P if no method that
determines whether a query point q is contained in P and that employs just
comparisons of q against lines in T can always give correct answers using fewer
than k such comparisons. More formally we say that a test set T is k-bad for
P if there is a point c so that for every S ⊂ T with |S| < k we have that
⋂

{L[c]|L ∈ S} intersects P as well as its complement P .

Lemma 1. If a test set T is k-bad for a polygon P , then any method that
determines membership of a query point in P by just using comparisons against
lines in T can be forced to make at least k such comparisons.

Proof. Let c be the point mentioned in the definition of k-badness of T . We will
use an adversary argument with the following strategy: during a query answer
all line comparisons as if c were the query point. Assume k − 1 tests had been
made during a query and S were the set of lines in T against which the query
point was compared. Let q and q′ be points in

⋂

{L[c]|L ∈ S} with q ∈ P and
q′ /∈ P . Such points must exist by the definition of k-badness. For the query

algorithm the points q and q′ are indisdinguishable from c, since all three points
behave the same on all comparisons against lines in S. But since q ∈ P and
q′ /∈ P the query needs at least one more comparison against some line in T in
order to produce a correct answer.

Let us call a line L a shaving line of polygon P if one of the two closed
halfspaces bounded by L contains exactly one edge e of P completely. We say
in this case that L “shaves off e.” Note that every line that contains an edge of
P is a shaving line of P .

Lemma 2. Let P be a convex polygon with n > 6 sides and let T be a set of
shaving lines of P . The set T is ⌊n/2⌋-bad for P .

Proof. Let T be such a set of shaving lines. For L ∈ T let L+ be the open
halfspace bounded by L that does not contain the edge shaved off by L. The
halfspace L+ contains n − 2 > 4 vertices. Thus, since n > 5 for any three lines
L1, L2, L3 ∈ T the intersection L+

1 ∩ L+

2 ∩ L+

3 must be non-empty. Thus by
Helly’s theorem the intersection

⋂

{L+|L ∈ T } is non-empty. Let c be a point
in this intersection.

Now let S ⊂ T with |S| = k − 1 < ⌊n/2⌋. There must be two consecutive
edges of P so that neither is shaved off by any line in S. Let v be the vertex4

joining those two edges. Certainly
⋂

{L[c]|L ∈ S} contains c but also v and also
an entire neighborhood of v, and therefore also points that are in P and points
that are not in P . Thus T is ⌊n/2⌋-bad for P .

Lemma 2 allows to prove Ω(n) lower bounds for anwering point containment
queries in an n-sided convex polygon using comparisons against a set of test
lines. We want to strengthen this to be able to claim that in the worst case
actually at least n such comparisons are needed.

We will strengthen the notion of “shaving” to “closely shaving.” For this
purpose pick from the edge e of P some point me in its relative interior, and we
will refer to me as the midstpoint of e and we will denote the set of all chosen
midstpoints, one for each edge, by MP . We will call a line L that shaves off
edge e of P closely shaving iff the closed halfplane bounded by L that contains
e contains no midstpoint except for me, or, in other words, the open halfspace
bounded by L that does not contain e contains all midstpoints except for me.

Lemma 3. For n > 6 let P be an n-sided convex polygon with set MP of chosen
midstpoint, and let T be a set of closely shaving test lines.

The set T is n-bad for P .

Proof. Let c be the point as in the proof of Lemma 2, and let S be a subset of T
containing fewer than n lines. There must be some edge e of P that is not shaved
off by any line in S. Because of the closely shaving property the midstpoint me

4 We ignore here the case that P is unbounded and those two edges are unbounded
and hence v is a vertex “at infinity.” This case can be taken care of either by arguing
it separately or by just claiming the slightly weaker (⌊n/2⌋ − 1)-badness.

must be contained in the open halfplane L[c] for each L ∈ S and the same must
be true for an entire neighborhood of me. Thus

⋂

{L[c]|L ∈ S} contains me and
also an entire neighborhood of me, and therfore also points that are in P and
points that are not in P . Thus T is n-bad for P .

3 A Voronoi Diagram Construction

With the results of the preliminary section the strategy for proving the main
Theorem 1 should be clear: Construct a set S of n sites, so that in its Voronoi
diagram there is a Voronoi cell Vp with n − 1 edges so that the set LS of all
perpendicular bisectors between pairs of points in S forms a set of closely shaving
lines of Vp (for appropriately chosen midstpoints). Lemma 3 then immediately
implies Theorem 1.

For our set S we will choose points from the non-negative part P of the unit
parabola described by {u(t)|t ≥ 0} with u(t) = (t, t2). Let 0 ≤ t1 < t2 < · · · < tn
and let S = {u(ti)|1 ≤ i ≤ n}. It is well known that the structure of the Voronoi
diagram of S is completely determined and independent of the actual choices
of the ti’s. To see this note that any circle can intersect P in at most 3 points,
which is a consequence of the fact that these intersection points are given by
the non-negative roots of a polynomial (a − t)2 + (b − t2)2 − r2, which has
coefficient 0 for t3, but this coefficient is the sum of the four roots, and hence
at most 3 of them can be non-negative (except for the uninteresting case that
all are 0). If there are 3 intersection points between P and a circle, then P must
cross the circle in those points and some parts of P must lie inside the circle.
From this, and the fact that for every circle u(t) is outside for sufficiently large t
you can characterize which triples of points from S span Delaunay triangles: all
triples of the form (u(t1), u(ti−1), u(ti) with 3 ≤ i ≤ n. This is akin to the well
known Gale’s evenness condition for the description of the structure of cyclic
polytopes [10, page 14].

The structure of the Voronoi diagram of S is now as follow: let Vi de-
note the Voronoi region of u(ti); the Voronoi region V1 neighbors every region
V2, V3, . . . , Vn in this counterclockwise order; V2 neighbors V1, V3, for 3 ≤ i < n
the region Vi neighbors Vi−1, V1, Vi+1, and Vn neighbors V1, Vn−1. All Voronoi
regions are unbounded (since S is in convex position). See Fig. 1 for an example.

For a, b ≥ 0 consider the perpendicular bisector between the points u(a) and
u(b). It is described by the equation

y =
−1

a+ b
x+ (a2 + b2 + 1)/2 .

Note that its slope is always negative and for a or b sufficiently large the slope
can be made arbitrarily close to 0.

Let Li,j be the perpendicular bisector between u(ti) and u(tj). By the dis-
cussion above each bisector L1,j contributes an edge ej to the Voronoi region
P = V1. Our goal will be to show that the ti’s can be chosen so that for each

u(ti)
V1

u(ti+1)

u(ti+2)

u(ti+3)

ei+2 ⊂ L1,i+2

Vi+2

Li+2,i+3

Fig. 1.

j > 2 each bisector Lij , with 1 ≤ i < j, closely shaves off edge ej from polygon
P (of course with an appropriate choice of midstpoints mi on ei, for 1 < i ≤ n).

We will prove this by induction on n. So assume that for some n ≥ 3 values
0 = t1 < t2 < · · · < tn have been chosen and for each j with 1 < j ≤ n a
midstpoint mj on Voronoi edge ej has been chosen, so that for 1 ≤ i < j the
bisector Li,j closely shaves off edge ej from V1. Now we want to choose tn+1 > tn
so that the bisectors Li,j with 1 ≤ i < j ≤ n remain closely shaving, and the
“new” bisectors Li,n+1 with 1 ≤ i ≤ n are closely shaving as well, in particular
they closely shave off the new edge en+1 of V1 contributed by L1,n+1.

Since “closely shaving off” is a local condition, in that it depends only on
edge ej and the midstpoints mj−1 and mj+1 all bisectors Li,j with i < j < n
definitely remain closely shaving, and the bisectors Li,n with i < n remain closely
shaving, provided the new Voronoi vertex vn between en and en+1 (which is the
intersection of L1,n and L1,n+1) is to the left of midstpoint mn. It can easily
be checked that the x-coordinate of vn is given by −(t2ntn+1 + tnt

2
n+1)/2. Thus

by making tn+1 large enough the Voronoi vertex vn can be moved as far left on
L1,n as desired.

We further need that all the bisectors Li,n with i ≤ n intersect the new
Voronoi edge en+1. This happens if L1,n+1 has slope closer to 0 than the slopes
of all the Li,n’s. Since the slope of Li,j is given by −1/(ti + tj) this can also be
achieved by making tn+1 suitably large, in particular

tn+1 ≥ tn + tn−1 . (1)

The midstpoint mn+1 for en+1 can then be chosen as any point on en+1 to the
left of all of those intersections Li,n ∩ L1,n+1.

Finally we need to ensure that “new” bisectors Li,n+1 with 1 < i ≤ n intersect
edge en between midstpoint mn and the new Voronoi vertex vn, moreover their
slope should be closer to 0 than the slope of L1,n+1 so that no Li,n+1 can intersect
en+1. Fortunately this slope condition holds automatically, since for i > 1 we
have ti > t1 = 0.

Now consider the intersection L1,n ∩ Li,n+1 for some i with 1 < i < n. Its
x-coordinate is given by

−
tn(t

3
n+1 + t2n+1ti + tn+1(t

2
i − t2n) + t3i − t2nti)

2(ti + tn+1 − tn)
,

which clearly can be made as small as desired by making tn+1 sufficiently large.
Thus all these intersections can be moved to the left of mn.

vn−1

vn

u(tn)

u(tn+1)

V1

L1,n+1

Li,n+1

L1,n

mn

Ln,n+1

Fig. 2.

It remains to show that all these intersections occur to the right of vn. Since
the slope of Li,n+1 is closer to 0 than the slope of L1,n+1, it suffices to show
that the intersections L1,n+1 ∩ Li,n+1 happen on L1,n+1 to the right of vn =
L1,n+1 ∩ Ln,n+1. The x-coordinate of such an intersection is given by

−(t2i tn+1 + tit
2
n+1)/2 ,

which, since ti < tn, is clearly larger than the x-coordinate of vn = L1,n+1 ∩
Ln,n+1, which is

−(t2ntn+1 + tnt
2
n+1)/2 .

4 Exponentiality of the Construction

The Fibonacci type Inequality (1) implies that tn, and hence some site coordi-
nate in S, is at least exponential in n. Sites with such large coordinates do not
seem to occur naturally in actual inputs, and thus our lower bound construction
seems artificial and not really relevant “in practice.” We therefore tried to alter
our construction in order to avoid such exponential behavior. The most natural
approach seemed to be to replace the parabola from which we chose the sites
of S by some other curve. We tried several curves, e.g. (t, t1+ε) for t ≥ 0, or
(t, t log t) for t ≥ 1, or the hyperbola (t, 1/t) for t ≥ 1. Each admitted the same
inductive construction we used in the proof in the previous section, but in each

case we arrived at exponentially large coordinates (particularly bad in the case
of the hyperbola). This raised the suspicion that this exponential behavior is
inherent in this inductive construction. This turns out to be indeed the case.

Assume we choose S from some curve γ. By translation and rotation5 we
may assume without loss of generality that the curve starts at the origin, lies in
the positive quadrant, is monotonically increasing and convex. Let p1, p1, . . . , pn
be the points chosen from the curve in their natural order with p1 being the
origin.

p1 = (0, 0)

p2

p3

p4

L2,3

L1,4

L1,5

s2

s3

s4

L4,5

Fig. 3.

The construction of the previous section places a number of constraints on
the pi’s. Here we will be interested in only one of them, namely the one that led
to inequality (1). It requires that for each i the bisector L1,i+1 between p1 and
pi+1 has slope closer to 0 than the bisector Li−1,i between pi−1 and pi. Since the
bisector Lk,ℓ is normal to the line through pℓ and pk this implies the following
condition: for each i the line through pi−1 and pi must have slope at most as
large as the slope of the line between p1 and pi+1. If we set pi = (xi, si · xi),
i.e. the slope of the line through p1 = (0, 0) and pi is si, then this slope condition
is expressed algebraically by

sixi − si−1xi−1

xi − xi−1

≤ si+1 ,

which implies that

xi ≥
si+1 − si−1

si+1 − si
xi−1 .

5 Such a rotation can be realized with “small” rational numbers in the transformation
matrix [3].

p1 = (0, 0)

p2

p3

p4

L2,3

L1,4

s2

s3

s4

Fig. 4.

This must hold for 3 ≤ i < n. Now let di denote the slope difference si+1 − si.
We obtain that

xi ≥
di + di−1

di
xi−1 =

(

1 +
di−1

di

)

xi−1 ,

and putting all these inequalities together we get that

xn−1 ≥

(

1 +
d2
d3

)(

1 +
d3
d4

)

· · ·

(

1 +
dn−2

dn−1

)

x2 . (2)

Below we show that inequality (2) implies that xn−1/x2 or dn−1/d2 must be
exponentially large. Both can be seen as constant sized rational expressions of
the coordinates of p2, p3, pn−1, and pn. If those coordinates are rational numbers
then therefore at least one of the involved numerators or denominators must be
exponentially large also.

Lemma 4. Let D0, D1, . . . , DN be positive numbers and let

P =

(

1 +
D0

D1

)(

1 +
D1

D2

)

· · ·

(

1 +
DN−1

DN

)

.

Then P ≥ ϕN or DN/D0 ≥ ϕN , where ϕ = 1.618... is the golden ratio, the
larger root of x2 = x+ 1.

Proof. It is an easy exercise to show that for
∏

1≤i≤N ρi = A, with ρi > 0
for all i, the product

∏

1≤i≤N (1 + ρi) is minimized when all ρi are the same,

i.e. ρi = A1/N .

With ρi = Di−1/Di we get that
∏

1≤i≤N ρi = D0/DN , and hence

P ≥
(

1 + (D0/DN)1/N
)N

.

Now let X = (DN/D0)
1/N . We have P ≥ (1 + 1/X)N and DN/D0 = XN .

Clearly for X ≥ ϕ we have
DN/D0 ≥ ϕN

.
For 0 < X ≤ ϕ we have

P ≥ (1 + 1/X)N ≥ (1 + 1/ϕ)N = ϕN ,

since by the definition of ϕ we have 1 + 1/ϕ = ϕ.

5 Conclusions and Remarks

We have shown that Nearest Neighbor Searching in the plane must be slow in the
worst case if the only type of primitive predicate allowed is comparing the query
point against bisectors of sites. This raises the question which additional type
of predicates must be used in order to facilitate guaranteed fast query time.
Certainly comparing query points against horizontal or vertical lines through
Voronoi points would do the job. However these predicates are a bit more com-
plicated than you would like, since algebraically they are realized by evaluating
the sign of a degree-3 polynomial in the coordinates of the sites and the query
point. Note that in contrast comparing a query point against a site bisector
amounts to evaluating the sign of a degree 2 polynomial. There has been some
work on reducing the degrees of the predicate polynomials that are used in a
nearest neighbor query [5, 7], however they apply only to the case where the
query points have integral coordinates.

In the context of this work an interesting question is whether comparing
query points against horizontal or vertical lines through sites could be useful.
Algebraically this is possibly the simplest of all imaginable predicates, since it
amounts to the evaluation of a degree 1 polynomial. Unfortunately at this point
we do not see any way of adapting our construction so that our lower bound also
works if those types of predicates are allowed. We leave it as in interesting open
problem to either prove that such predicates are not useful for nearest neighbor
searching or to devise a method that profitably exploits such predicates.

Our lower bound constructions involve very large numbers. So it is conceiva-
ble that if all numbers involved have small rational representations then just
bisector tests suffice for fast Nearest Neighbor Searching. At this point we do
not see how such a restriction on the coordinates can be profitably exploited.

The results in this paper should be regarded as advice to the algorithm
designer. If you want guaranteed fast Nearest Neighbor Search, then using just
bisector tests cannot do the job, unless you make assumptions on your input
coordinates and exploit these assumptions.

References

1. Jon L. Bentley, Multidimensional Binary Search Trees used for Associative Search-

ing, Communications of the ACM, 18(9):509–517, 1975.
2. Marcel Birn, Manuel Holtgrewe, Peter Sanders, and Johannes Singler, Simple and

Fast

Nearest Neighbor Search, Proceedings of the Twelfth Workshop on Algorithm En-
gineering and Experiments (ALENEX), SIAM, 2010.

3. John F. Canny, Bruce R. Donald, and Eugene K. Ressler, A Rational Rotation

Method for Robust Geometric Algorithms, Proc. of the Eigth ACM Symposium on
Computational Geometry (SOCG), 251–260 (1992).

4. David G. Kirkpatrick, Optimal Search in Planar Subdivisions, SIAM J. Comput.
Volume 12, Issue 1, pp. 28–35, 1983.

5. Giuseppe Liotta, Franco P. Preparata and Roberto Tamassia, Robust Proximity

Queries: An Illustration of Degree-driven Algorithm Design, SIAM J. Comput.
Volume 28, Issue 3, pp. 864–889, 1998.

6. Richard J. Lipton, Robert E. Tarjan, Applications of a Planar Separator Theorem,
SIAM J. Comput. Volume 9, Issue 3, pp. 615–627, 1980.

7. David Millman and Jack Snoeyink, Computing Planar Voronoi Diagrams in Double

Precision: A Further Example of Degree-driven Algorithm Design, Proceedings of
the Annual Symposium on Computational Geometry (SoCG), 386–392, 2010.

8. David M. Mount and Sunil Arya. ANN: A Library for Approximate Nearest Neigh-

bor Searching. CGC 2nd Annual Fall Workshop on Computational Geometry, 1997.
9. Michael I. Shamos, Geometric Complexity, Proceedings of Seventh Annual ACM

Symposium on Theory of Computing (STOC), 224–233, 1975.
10. Günter M. Ziegler, Lectures on Polytopes, Springer 1995.

