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Abstract

We study the problem of approximating MST(P ), the
Euclidean minimum spanning tree of a set P of n
points in [0, 1]d, by a spanning tree of some subset
Q ⊂ P . We show that if the weight of MST(P ) is to
be approximated, then in general Q must be large. If
the shape of MST(P ) is to be approximated, then this
is always possible with a small Q.

More specifically, for any 0 < ε < 1 we prove:
(i) There are sets P ⊂ [0, 1]d of arbitrarily large

size n with the property that any subset Q′ ⊂ P that
admits a spanning tree T ′ with

∣

∣|T ′| − |MST(P )|
∣

∣ <

ε · |MST(P )| must have size at least Ω(n1−1/d). (Here
|T | denotes the weight, i.e. the sum of the edge lengths
of tree T .)

(ii) For any P ⊂ [0, 1]d of size n there exists a subset
Q ⊆ P of size O(1/εd) that admits a spanning tree
T that is ε-close to MST(P ) in terms of Hausdorff
distance (which measures shape dissimilarity).

(iii) This set Q and this spanning tree T can be com-
puted in time O(τd(n) + 1/εd log(1/εd)) for any fixed
dimension d. Here τd(n) denotes the time necessary
to compute the minimum spanning tree of n points
in Rd, which is known to be O(n log n) for d = 2,
O((n log n)4/3) for d = 3, and O(n2−2/(⌈d/2⌉+1)+φ),
with φ > 0 arbitrarily small, for d > 3 (see [1]).

All the results hold not only for the Euclidean met-
ric L2 but also for any Lp metric with 1 ≤ p ≤ ∞ as
underlying metric.

1 Introduction

The approximation of geometric problems by means
of reducing the size of the input has been the subject
of study of many researchers. The idea is the fast
identification of the part of the input that matters
for the problem at hand and the use of this extracted
data to speed up the computations.

In [2], Agarwal et al. developed a framework, called
Coresets, to approximate extent measures of a given
set of points P in any fixed dimension d. Such extent
measures include the diameter, the width, the radius
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of the minimum enclosing cylinder, etc. Their idea is
basically the computation of a subset P ′ of P whose
size depends exclusively on ε and d and, whose con-
vex hull approximates the convex hull of P . Then, use
this new convex hull for further computations and ar-
gue that this produces good approximations for the
desired extent measures.

In this paper we are interested in approximating the
Euclidean minimum spanning tree of a set P ⊂ Rd of
points, but not in the sense of, say, Clarkson [4], who
wants to quickly find some spanning tree of P whose
weight is close to that of MST(P ). We are instead in-
terested in finding a spanning tree of a small subset of
P that in some sense approximates MST(P ). We will
show that the core set approach outlined above can-
not work in this context if the approximation measure
is the weight of the trees. However, if we want to ap-
proximate MST(P ) in a more topological (or shape)
sense, then this is indeed possible using a spanning
tree of a subset of P whose size depends exclusively
on ε, the approximation parameter, and on d. This
result potentially has applications in Image Compar-
ison and Pattern Recognition.

Throughout the paper let 0 < ε < 1 be a fixed
constant. Also the dimension d is meant to be fixed.

2 MST(P ) admits no constant size subset approx-

imation with respect to weight

The goal of this section is to prove the following result:

Theorem 1 For each n = kd with k ∈ N there exists

a set P ⊂ [0, 1]d of n points such that any subset

Q′ of P that admits a spanning tree T ′ with |T ′| ≥
(1 − ε)|MST(P )| must have size at least Ω(k(d−1)).

Note that this theorem clearly implies Claim (i) of
the abstract.

Proof. Let n = kd with k ∈ N and let Gd be the d-
dimensional grid over [0, 1]d of cell size δ = 1/(k− 1).
Let P be the set consisting of the grid points of Gd.
It is clear that |P | = n. Any Euclidean minimum
spanning tree of such a set P only contains grid edges.
Thus |MST(P )| = (n− 1) · δ = (n− 1)/(k− 1) > n/k.
See Figure 1.

Now let T ′ be a spanning tree of some Q′ ⊂ P
such that |T ′| ≥ (1 − ε)|MST(P )|. Every edge inside
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Figure 1: For P ⊂ [0, 1]2 of size 25 = 52, a rectilinear
spanning tree is shown. The vertical line l works as
a backbone and connecting all the horizontal lines of
G2 to it gives us a total weight of exactly 24/4 = 6.

the unit cube [0, 1]d has length at most
√

d. Hence
|T ′| < |Q′| ·

√
d. Combining this last inequality with

the ones above we have

|Q′| ·
√

d > |T ′| ≥ (1 − ε)|MST(P )| > (1 − ε)
n

k
.

Since n = kd and ε and d are constant, the result
follows.

�

3 The Hausdorff Metric

The Hausdorff metric allows to define distances be-
tween subsets of a metric space. In our case the metric
space is Rd with the usual Euclidean metric.

Definition 1 (Hausdorff distance) The Haus-
dorff distance H(A, B) between two non-empty

subsets A, B of Rd is defined to be the radius of the

largest open ball centered in one set and not meeting

the other set.

We say that A and B are ε-close iff H(A, B) ≤ ε.

It is well known that the Hausdorff distance con-
stitutes a metric on the space of all non-empty com-
pact subsets of Rd. Moreover, in a way it expresses
the shape similarity, or rather dissimilarity between
sets: H(A, B) = 0 means A and B must be the same,
i.e. they are not at all dissimilar, and A and B are ε-
close means that they are only ε-dissimilar in the sense
that for any point in one set within Euclidean dis-
tance ε there must be a point of the other set. Many
computational geometry papers have used the Haus-
dorff distance as a measure of similarity/dissimilarity
between subsets of R

d, see e.g. [3]. We will use the
Hausdorff distance to measure similarity/dissimilarity
between spanning trees of finite sets embedded in Rd,
where such a tree is considered a subset of Rd, namely
the union of the segments formed by its edges.

It will turn out that if instead of closeness in weight
we consider closeness in Hausdorff distance the Eu-
clidean minimum spanning tree of any finite P ⊂ Rd

admits a good approximation by a spanning tree of a
constant sized subset of P .

4 Approximating MST(P ) by shape

At first a few graph theoretic preliminaries.

Let G be a complete undirected graph with vertex
set P and with weighted edges. For the sake of ex-
position we assume that all edge weights are distinct,
and thus the minimum edge of any cut of G and also
the minimum spanning tree MST(P ) are unique. This
assumption can be justified using a standard pertur-
bation argument. Let P = 〈P1, . . . , Pk〉 be a partition
of P into k ≥ 2 non-empty “clusters,” and let G be
the graph obtained from G by contracting each clus-
ter in P into a single node. G has parallel edges and
self-loops, still, its minimum spanning tree MST(P ) is
unique. Consider the forest on P formed by the k− 1
edges of G that induce the edges of MST(P ). Let us
call this forest the minimum cluster forest of P with

respect to P , for short MCF(P, P ).

What is the relationship between the edges in
MCF(P, P ) and MST(P )?

Lemma 2 Every edge in MCF(P, P ) also is an edge

of MST(P ).

Proof. Let e be an edge of MCF(P, P ) and let e be
the corresponding edge of MST(P ). The removal of
e from MST(P ) results in two subtrees producing a
partition of the node set P into two sets R and S.
The edge e must be the shortest edge between nodes
(i.e. clusters) in R and in S and hence e must be the
shortest edge between (original) vertices in R =

⋃

R
and in S =

⋃

S. Since R and S form a partition of P
this means that e must be an edge of MST(P ). �

Let us call an edge of G long (with respect to P ) iff
it is longer than any edge connecting two vertices in
the same cluster of P .

Lemma 3 Every long edge of MST(P ) is also an edge

of MCF(P, P ).

Proof. Let e be a long edge in MST(P ). Similar to
the previous proof the edge e induces a partition of P
into R and S, and e is the shortest edge connecting
vertices in R with vertices in S. No cluster of P can
have a vertex both in R and in S, since such two ver-
tices would be connected by an edge shorter than the
long edge e, a contradiction to e being the shortest
edge between R and S. Thus R and S induce a parti-
tion of the cluster set P into R and S, and e (induced
by e) is the shortest edge connecting a cluster in R
with a cluster in S. Thus e is an edge of MST(P ) and
therefore e is an edge of MCF(P, P ). �
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In the following P will a set of points in Rd and
the weight of the edge connecting two points x, y ∈ P
will be the Euclidean distance between x and y. We
are now able to present the main result of this section
which will prove Claim (ii) of the abstract.

Theorem 4 Let P be a set of points in [0, 1]d and let

0 < ε < 1 be a given parameter. It is possible to find

a spanning tree T of some subset Q of P such that

MST(P ) and T are ε-close and |Q| = O(1/εd).

Proof. We will start by imposing a d-dimensional
grid Gd of cell size δ = 2ε

3
√

d
over P . The grid Gd

induces a partition P of P into k = O(1/εd) clusters,
with each cluster begin composed of the set of points
contained in a cell of Gd. See Figure 2. Note that two
points in the same cluster are at most 2ε/3 apart.

The claimed set Q will be the points in P incident to
the edges of the minimum cluster forest MCF(P, P ).
Since there are k − 1 edges in MCF(P, P ) it follows
that |Q| = O(1/εd).

The claimed spanning tree T of Q will contain all
edges in MCF(P, P ) and in addition for each cluster
C in P an arbitrary spanning tree of the points of Q
in C. See Figure 2.

We claim that T and MST(P ) are ε-close.

We need to prove that for every point on T there
is a point on MST(P ) within distance at most ε, and
vice versa.

Let e be an edge of T . If e is an edge of MCF(P, P ),
then by Lemma 2 it is also an edge of MST(P ) and
thus every point x on e is within distance 0 < ε of
some point of MST(P ). If e is an edge connecting two
points of the same cluster, then its length is at most
2ε/3. Thus any point x on e is at most at distance
ε/3 < ε from one of e’s endpoints, which are both in
MST(P ).

Now let e be an edge of MST(P ). If it has length
bigger than 2ε/3, then it is long in the sense of
Lemma 3, and therefore it is contained in MCF(P, P )
and hence also in T . Thus every point x on e is within
distance 0 < ε of some pont of T . If e has length less
than 2ε/3, then every point x is within distance ε/3
of an endpoint v of e. Let q some point of Q in the
cluster containing v. The distance between v and q
is at most 2ε/3, and thus by the triangle inequality
the distance between x and q (which lies on T ) is at
most ε. �

This result says that it is possible to find a constant-
size subset Q of P along with a spanning tree T of Q
such that shape-wise T and MST(P ) look essentially
the same. This gives a method to sort of “compress”
MST(P ) to a tree that is close in shape but has con-
stant size. Note, however, that one cannot conclude
anything from T about the total weight |MST(P )|.

δ
δ

Figure 2: The points chosen to form Q are highlighted
in light gray. The dashed edges connect points in
different clusters of P induced by G2

5 Computing T

The only computationally non-trivial step in comput-
ing Q and T is the determination of the edges of the
cluster forest MCF(P, P ). The straigtforward way of
computing these edges, forming the cluster graph G
and computing its minimum spanning tree MST(P ),
leads to an Θ(n2) time algorithm in the worst case,
since G can have Θ(n2) non-loop edges. (We assume
here ε and d to be fixed.)

Lemma 2 implies that for computing MST(P ) it
suffices to consider only those edges that are induced
by edges of MST(P ). This suggests the following algo-
rithm: Compute B = MST(P ), for each grid imposed
cluster contract the edges of B within the cluster to
produce a contracted graph B. Compute the mini-
mum spanning tree of B, which by Lemma 2 is the
same as MST(P ).

If τd(n) denotes the time necessary to compute the
Euclidean minimum spanning tree of n points in Rd,
then the time necessary for the outlined method is
τd(n) for computing MST(P ), plus O(n) for comput-
ing B and O(n+N log N) for computing the minimum
spanning tree of B, where N = O(1/εd) is the num-
ber of occupied grid cells, which is constant if ε and d
are considered to be constant. The total time for the
whole method is then dominated by τd(n), which is
known to be O(n log n) for d = 2 and O((n log n)4/3)
for d = 3, and O(n2−2/(⌈d/2⌉+1)+φ), with φ > 0 arbi-
trarily small, for d > 3 (see [1]).

Other methods suggest themselves, but they are ei-
ther incorrect or do not seem to lead to better time
bounds. For instance, we could choose a small sample
set of points from each occupied cluster and compute
the minimum spanning tree of the union of these sam-
ple sets. However, the tree produced this way may be
very different in shape from MST(P ) and will not lead
to a tree that is ε-close to MST(P ). Or, we could run
a minimum spanning tree algorithm on the clusters
(without forming G or some subgraph explicitly) by
repeatedly solving so-called bi-chromatic closest pair
problems. However, this is unlikely to produce a bet-
ter running time, since the complexity of solving a
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bi-chromatic closest pair problem on n points in Rd is
known to be Θ(τd(n)), see [5].

Finding a faster algorithm for computing a constant
sized tree that is ε-close to MST(P ) looks like a chal-
lenging problem.

6 Conclusion

We have shown that in general it is not possible to
approximate well the weight of the Euclidean mini-
mum spanning tree of a set of points P in Rd with
a subset of size independent of the size of P . How-
ever, changing the notion of approximation, we have
shown, that it is possible to compute a spanning tree
T of some small subset Q ⊆ P such that the Hausdorff
distance between T and the minimum spanning tree
of P is small, which means that the two trees are very
similar in shape. This potentially has applications in
Image Comparison or Pattern Recognition, and also
provides a potential way of compressing MST(P ) in
a meaningful and interesting way.

Our results and methods apply not just to the stan-
dard Euclidean L2 metric but also to any Lp metric
for 1 ≤ p ≤ ∞.
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