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Abstract

We study the following algorithmic problem: given n

points within a finite d-dimensional box, what is the
smallest number of extra points that need to be added
to ensure that every d-dimensional unit box is either
empty, or contains at least k points. We motivate the
problem through an application to data privacy, namely
k-anonymity. We show that minimizing the number
of extra points to be added is strongly NP-complete,
but admits a Polynomial Time Approximation Scheme
(PTAS). In some sense, this is the best we can hope for,
since a Fully Polynomial Time Approximation Scheme
(FPTAS) is not possible, unless P=NP.

1 Introduction

Data privacy is a fundamental problem associated to
data mining. On one hand, we would like to make data
publicly available so that data mining or analysis is pos-
sible. On the other hand, we would like to make sure
that the identity of an individual is not disclosed and
no extra information is revealed as a result of mining.
Several approaches have been proposed for alleviating
the inherent tension between the two goals. Two of the
more popular frameworks are k-anonymity [3] and dif-
ferential privacy [7].

In differential privacy, one controls the way a
database is accessed, and adds noise to the results of
queries to the database. The idea is essentially to en-
sure that the results of any query, or analysis, with or
without the data of one individual have similar distri-
butions.

The idea behind k-anonymity is to ensure that for
every query there are at least k records that are indis-
tinguishable from each other. This is usually achieved
by suppression or generalization, i.e., selective deletion
of parts of data - which hopefully does not substantially
affect the results of analysis using the data. The larger
the value of k , the greater the extent of privacy. Mey-
erson and Williams [5] have studied the complexity of
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computing the minimum amount of generalization and
suppression necessary for k-anonymity, and proved that
it is an NP-hard problem. They also give an O(k log k)
approximation algorithm. LeFevre, DeWitt and Ra-
makrishnan [6] studied the optimization problem in a
multidimensional model. They proved NP-hardness and
gave a greedy algorithm that seems to perform well in
practice.
In this paper we concentrate on achieving k-

anonymity, assuming that the queries are sufficiently
broad. This condition describes a situation in which
an adversary has only partial or inaccurate information
about an individual. The goal is to prevent disclosure
of identity in this setting.
Now assume that the query is broad, but still the

database returns only a small number of records. What
should we do in such a case? One easy solution is to
refuse answering such queries. This is not effective,
since the adversary can make several broader queries
which contain the unanswered query range, and then
take their intersection to determine which records be-
long to the unanswered range. Another easy solution
is to append some fake data on the spot, so that the
total number of records returned is at least k . This is
not effective either since an adversary can make several
similar queries and observe that only certain records
are present in all of the returned results, thereby find-
ing out that these are the only real data. However, this
approach can be made effective if we can be consistent
about the fake data. The idea is to insert a fixed set of
fake data points all at once into the database such that
the answer to any broad query either returns no records
or at least k records.
We represent data records having multiple attributes

as points in multidimensional space. This view is natu-
rally suited for numeric data. We assume that queries
are axis-parallel hyper-rectangles, which we will simply
call d-dimensional boxes, that have certain minimum
width in every dimension. The specific minimum width
in each dimension can be different and needs to be cho-
sen appropriately depending on the data. However, by
appropriate scaling we can assure that the minimum
width in every dimension is exactly one.
We would like the amount of fake data to be as small

as possible. It is intuitive that in general the amount
of fake data required is much smaller than the size of
the database, since data is often densely concentrated
in certain regions, and fake data is required only for
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sparse regions. For example, if the multidimensional
volume of the domain of the data is V , our broad query
ranges have volume at least v , and there are n data
points chosen uniformly at random from the domain,
then the expected number of data points in a specific
broad query range is nv/V . If this number is much
larger than k , then with high probability a broad range
is already k-anonymous, and needs no fake data. An
easy calculation shows that the number of fake points
required goes down exponentially with nv/(kV ).

1.1 Recasting to a geometric setting

The main geometric problem studied in this paper is the
following: given a set P of n points in a d-dimensional
box1 D ⊆ [0, s]d (s ≥ 1), what is the smallest number
of additional points that need to be added to P , so that
every d-dimensional unit box contained in D is either
empty or contains at least k points.
Notice that, if we want to hit all unit hypercubes, not

just the non-empty ones, then this is a standard hitting
set problem, with an obvious solution. The restriction
to non-empty hypercubes is precisely what makes the
problem difficult. This situation is similar to that of
other hitting set problems, in which the ranges that we
are interested in are defined implicitly. For example,
when studying ε-nets, one is interested in hitting all
ranges which have size at least εn. Implicitly defined
hitting set problems also appear in combinatorial set-
tings such as the feedback vertex set problem, where
the goal is to pick the smallest set of vertices that hit
all cycles of a graph.
No general technique is known to solve problems of

this kind, and the methods for solving individual prob-
lems are varied. Our problem (defined formally in the
next section) is motivated by the discussion in the pre-
vious section, and focuses on approximation algorithms
for achieving k-anonymity.

1.2 Our contribution

Motivated by the above discussion, we define the follow-
ing notions:

Definition 1 A set P of n points contained in a box
D ⊆ [0, s]d (s ≥ 1) is k-anonymous, for some given
k ≥ 1, if and only if every box of unit size contained in
D is either empty or it contains at least k points of P.

Note that any collection of points is trivially 1-
anonymous. We therefore concern ourselves only with
the case k ≥ 2.

Definition 2 Given a set P of n points as before, a k-
anonymizer of P is a set A ⊂ D of extra points such
that P ∪ A is k-anonymous.

1In this paper, all boxes considered are axis-parallel.

Our goal is to find a k-anonymizer of smallest car-
dinality. We call this an optimal k-anonymizer. The
decision version of the problem is the following:
k-Anonymity:2 Given a set P of n points as before

and an integer l , is there a k-anonymizer of P of size at
most l?
The results achieved in this paper are the following:

Theorem 1 k-Anonymity is strongly NP-complete,
even for k = 2.

While we prove this for the two-dimensional case only,
the result trivially implies the NP-completeness of the
problem in any dimension d ≥ 2. On the positive
side, we give a polynomial-time approximation scheme
(PTAS):

Theorem 2 Let OPT denote the size of an optimal k-
anonymizer for a set P of n points in D ⊂ R

d . Then,
given 0 < ε ≤ 1, a k-anonymizer of P, of size at most

(1 + ε)OPT can be computed in O((knd/ε)poly(k,(d/ε)
d ))

time.

Note that a fully polynomial time approximation
algorithm (FPTAS) is not possible for strongly NP-
complete problems, unless P=NP. Also, as the expo-
nents in our approximation scheme are prohibitively
large, we do not claim direct applicability of the al-
gorithm, thus Theorem 2 should rather be taken as an
existential result.
The rest of the paper is organized as follows: in Sec-

tion 2 we introduce a dual setting, which is equivalent
to the original problem but provides a better setting in
which to prove our results. In Sections 3 and 4 we prove
Theorems 1 and 2, respectively.

2 Dual setting

For convenience, we work in a “dual” setting based on
our “primal” setting of input points/boxes, where we
replace points by boxes and boxes by points. Each p ∈ P

gets mapped to the full dimensional unit box with its
center at p, and every unit box B ⊂ D in the primal
setting gets mapped to its center. This way, a set of
n points P gets mapped to a set Q of n unit boxes.
Observe that incidences between points and boxes are
preserved by this transformation.
In all collections of points or boxes that we mention,

we allow multiple copies of the same element. For sim-
plicity we call these collections sets, even though tech-
nically they are multisets.
Given a set Q of n unit boxes, and a point p ∈ D, we

define the depth of p as the number of elements ofQ that
contain p. We now have the following dual definition of
k-anonymity:

2Our definition of k-Anonymity is slightly different from ex-
isting formulations in the literature, however, due to the strong
similarity, we retained the term.
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Definition 3 Let Q be a set of n unit boxes of dimen-
sion d contained in a box D ⊆ [0, s]d (s ≥ 1). We say
that Q is a k-anonymous arrangement of boxes if and
only if the depth of every point p ∈ D is either 0 or at
least k.

The equivalence between the two definitions follows
from this simple observation: If p is a point and B is a
unit box containing p, then the unit box centered at p
contains the center of B .
Now the task is to find a set A of unit boxes (rep-

resenting the extra points in the primal) of minimum
cardinality such that Q ∪ A is k-anonymous. For com-
pleteness, we have the following formal definition of the
decision version:
k-Anonymity (dual): Given a set Q of n unit boxes

and an integer l , is there a k-anonymizer for Q with at
most l boxes?

3 NP-completeness: proof of Theorem 1

First we show that k-Anonymity ∈ NP. We consider
an instance of the problem in the primal version (a set P
of n points in a rectangle D ⊂ R

2 and a threshold l) and
a candidate solution (a set A of t points in D). We need
to verify in time polynomial in n + t that the solution
is correct, i.e. P ∪ A is k-anonymous and that |A| ≤ l .
The latter can be checked with a simple counting, which
takes O(t) time. It remains to be shown that we can
verify k-anonymity of a set of points in polynomial time.
Let us call a unit box in the primal setting a test box.

There are an infinite number of locations in which a test
box can be placed, but the following observation shows
that it is sufficient to verify O((n + t)2) of them: If we
move a test box continuously, the number of points in-
side does not change as long as the sides of the box do
not cross any point. If we do not meet any points, we
stop at the boundary of D. It is therefore sufficient to
look at test boxes in particular locations: one of the ver-
tical sides of the test box touches a point or the bound-
ary of D and one of the horizontal sides touches a point
or the boundary of D. By convention we do not count
points on the top- or on the right side of the test box
and we count points on the bottom- or on the left side
as well as points inside the test box. Verifying that in
all of these test boxes there are either at least k points
or none, requires polynomial time.
Now we prove NP-hardness. This is done using a

reduction from Planar3SAT, a known NP-complete
decision problem [2]. In 3SAT, given a formula φ in
3-CNF, we ask whether there exists an assignment of
truth values to the variables, such that φ evaluates to
true. In Planar3SAT we restrict the question to pla-
nar formulae: those that can be represented as a planar
graph in which vertices correspond to both variables
and clauses of the formula and there is an edge between

clause C and variable x if and only if C contains either
x or ¬x .

Knuth and Ragunathan [4] observed that Pla-

nar3SAT remains NP-complete if we restrict it to for-
mulae having the following rectilinear embedding : vari-
ables are placed on a line, clauses are placed on the two
sides of the line and the three legs of each clause are
properly nested (Figure 1(a)).

(a)

(b)

Figure 1: (a) Rectilinear embedding of the formula (b∨¬c ∨

¬d) ∧ (a ∨ ¬b ∨ d) ∧ (¬a ∨ b ∨ c).
(b) A variable with three connections on top and one at the
bottom and its corresponding gadget (above). Clause and
its gadget (below).

Given an instance of Planar3SAT with an embed-
ding as described before, we transform it into a two
dimensional instance of the (dual) k-Anonymity deci-
sion problem.

The unit squares of the set Q are placed so as to align
with an orthogonal grid with cells of size 1

5 × 1
5 . The

placement of Q will create the following types of regions
in D: (a) empty regions, consisting of points with depth
0, (b) uncovered regions consisting of points with posi-
tive depth less than k , which need to be “fixed” by the
k-anonymizer and (c) safe regions consisting of points
with depth at least k . Our construction will assure that
all uncovered regions have a depth of exactly k − 1,
therefore we need not add multiple copies of the same
square in the solution.

We can create an uncovered square of size 1
5×

1
5 in the

following way: we put k − 1 squares in the same place,
k squares shifted to the right by 1

5 and k squares shifted
upwards by 1

5 . We call the resulting uncovered square
a patch and it is the main element in our reduction.

Our construction is such that patches are surrounded
by large safe regions. Consider a box B ∈ A that covers
one or more patches created by the input set Q. The
parts of B that do not cover a patch fall entirely within
the safe region surrounding the patches. In this way



25th Canadian Conference on Computational Geometry, 2013

we ensure that the boxes in the k-anonymizer A do not
create new uncovered regions.
Our main gadget is a sequence of patches which we

call a wire (Figure 2). Note that the wire can be ex-
tended infinitely at both ends. The wire has two im-
portant properties: (1) a unit square can cover any two
neighboring patches, such that the leftover part falls en-
tirely in the safe region, and (2) no unit square can cover
more than two patches of the wire. In Figure 2, uncov-
ered patches are colored black, the surrounding safe re-
gion is gray. We also show the corresponding points in
the primal diagram, together with their multiplicities.
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Figure 2: Wire gadget in dual version and primal points with
their multiplicities.

We can also design a bend gadget, which will intro-
duce 90 degrees turns in a wire, shown in Figure 3 in
the Appendix. Both of the previously mentioned prop-
erties of a wire are also preserved by the bend gadget,
which we illustrate with dotted unit squares that cover
neighboring patches..
Now we can create loops and we will represent each

variable by a loop that contains an even number of
patches. Let the patches in a loop be numbered from
1 to 2m. It can be observed that the optimal k-
anonymizer of this loop has m boxes, each covering
two neighboring patches. The boxes cover either the
patches (1, 2), (3, 4), ... , (2m − 1, 2m), or the patches
(2, 3), (3, 4), ... , (2m, 1). The choice between the two op-
timal solutions encodes the truth value of a variable.
We transmit the value of a variable with a tentacle

extending from the main loop. A tentacle consists of two
parallel wires with a sufficient distance between them to
avoid interference. A clause gadget is the meeting point
of three such tentacles. The variable and the clause
gadget are schematically presented in Figure 1(b). The
line here indicates a wire, without showing the actual
patches.
We will show the clause gadget in more detail in the

full version of this paper. However, as mentioned be-
fore, it is the meeting point of three variable tentacles.
Besides the patches that make up the variable tentacles,
the clause contains an extra patch in the middle. This
patch is placed in such a way that it is reachable by
a square of the optimal covering of either of the three
variables, but only if the variable is in one particular

state. By convention, we consider this the true state.
This means that if all three variables are false, we need
an extra square to cover the patch in the middle. This
penalty is the key ingredient of our reduction.

We have not yet discussed negated variables. If a vari-
able appears negated in a clause, we need to lengthen
the corresponding tentacle by one patch on each side,
so that the two patches nearest to the clause center are
now covered by a single square in the false state. We
can achieve such a shift by replacing a small piece of
a wire by a condensing gadget. This gadget increases
the number of patches by one, while keeping the end-
points in place and maintaining properties (1) and (2)
of a wire. We omit the details of this gadget, as it is a
straightforward construction.

Our reduction is almost complete; what is left is the
computation of the parameter l in the k-Anonymity

instance. Let the total number of patches in wires (ex-
cluding the extra patches in the middle of clauses) be
2m. Then we set l = m and conclude that there exists a
k-anonymizer of size at most l if and only if the original
Planar3SAT instance has a satisfying assignment.

For completeness, we need to prove that our construc-
tion is of polynomial size (in terms of the number of
clauses and variables of the Planar3SAT instance).
First we observe that the resulting construction can be
bounded by a box of polynomial size: the height of the
box depends on the maximum level of nesting in the em-
bedding of the formula, but each additional level results
in an increase of constant size. The number of levels is
bounded by the number of clauses in the formula. The
width of the rectangle increases with the addition of
each new variable or clause, but again, only by a con-
stant additive term. Since our construction consists of
points with multiplicity at most k aligned with a grid of
size 1

5×
1
5 , the total number of points needed is less than

25k times the size of the bounding box, which is clearly
polynomial. This concludes the proof of Theorem 1.

4 PTAS: proof of Theorem 2

As before, all this section will take place in the dual set-
ting, where the input set of points P is represented by
an arrangement of boxes Q. The main result of this sec-
tion is the proof of correctness of the following random-
ized algorithm that computes a k-anonymizer of size at
most (1 + ε)OPT , where OPT denotes the size of an
optimal k-anonymizer of Q. This algorithm is based
on a technique developed by Hochbaum and Maass [1].
Additionally, at the end of the section we will discuss
how to derandomize our algorithm..
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Algorithm 1

Input: A set Q of n unit boxes in D ⊆ [0, s]d (s ≥ 1).
Output: An anonymizer of size (1 + ε)OPT for Q.

1. Given 0 < ε ≤ 1, choose L = (2d/ε) and a random integer
r ∈ [0, L− 1].

2. Impose a grid G over domain D of cell size L, and with offset r
from the origin in every dimension.

3. Find an optimal k-anonymizer inside every non-empty cell of G.
4. Output the union of the solutions of the cells of G.

In Step 2 of the algorithm, offset r from the origin
means that the coordinates of every grid point inside
domain D are of the form (r+cL), where c ≥ 0 is integer.
The grid points on the boundary of D are automatically
defined. Note that non-empty refers to the dual view:
we consider a cell empty if all its points have depth 0 or
at least k .
As the reader can note, the only step in the algorithm

that is non-trivial is Step 3, in which we have to com-
pute an exact solution of a subproblem contained in a
smaller domain. In order to make the presentation sim-
pler, we first focus on the case d = 2. We then look at
the general case, and then consider derandomization of
Algorithm 1.
Given two axis-parallel squares, we say that they are

aligned if and only if they intersect only at their bound-
aries, i.e. their intersection is non-empty, but they have
disjoint interiors. Now, given a set of unit squares
Q = {Q1, ... ,Qn} ⊂ D ⊆ [0, s]2, we can define a grid
GQ over D as follows:
Let Q ∈ Q and define G

Q to be the unit grid over
D having Q as a cell. Denote by E (GQ) the set of grid
lines of GQ . The set of grid lines of GQ is

⋃n
i=1 E (G

Qi ),
and its vertex set is the set of intersection points among
its grid lines. We now have the following lemma:

Lemma 3 Let Q ⊂ D and GQ be as defined before.
Then there exists an optimal k-anonymizer A of Q such
that each of its elements has its vertices at grid points
of GQ.

Proof. We show that there is an optimal k-anonymizer
that is aligned in the horizontal direction. By a similar
argument it can be shown that there is an optimal k-
anonymizer that is aligned in both the horizontal and
vertical directions.
Let us proceed by contradiction. LetA be the optimal

k-anonymizer with the least number of elements whose
vertical sides are not aligned with the vertical grid lines
of GQ. Denote by U this set of “unaligned” elements of
A. If U = ∅ then we are done, so we will assume that
U 6= ∅. If we manage to move the elements of A around,
such that the cardinality of U decreases, we are done.

We will move the boxes in U to the right simulta-
neously and at the same speed until we are about to
de-anonymize some region and are forced to stop. At
that point, some element of U gets aligned (horizon-
tally) with some element B ∈ Q ∪ (A \ U), and thus
automatically with a vertical grid line of GQ, since B

was already aligned. Observe that during this process
we do not de-anonymize any region of D but we “align”
one element of U. This is a contradiction since we as-
sumed that U was of minimum cardinality.
Once we have an optimal solution that is horizon-

tally aligned to GQ we can repeat the argument with
a solution whose boxes are horizontally aligned and a
minimum number of them are vertically unaligned. �

We can now perform Step 3 of Algorithm 1 in poly-
nomial time:

Lemma 4 Let Q = {Q1, ... ,Qn} be a set of unit squares
contained in a square of side-length L. Then a k-
anonymizer of minimum cardinality can be found in

time O
(

(knL)
poly(k,L2)

)

.

The proof is based on Lemma 3. Since there exists an
optimal k-anonymizer in which every element is aligned
with the grid, we exhaustively search all candidate sets
in increasing order of size, until we find a solution. We
defer the details to the full version of this paper.
Note that in practice L and k might be small, and in-

dependent of n, giving a running time of the sort O(nc),
for some constant c , which is thus polynomial in n. We
now prove a result that implies Theorem 2 for the case
d = 2, by setting L = 4/ε.

Theorem 5 Let Q ⊂ D be a set of n unit squares
defined as before. Then Algorithm 1 computes a k-
anonymizer of Q of size at most (1 + ε)OPT in time

O
(

(knL)
poly(k,L2)

)

.

Proof. To achieve the desired running time, we run
the algorithm of Lemma 4 in each non-empty cell of the
grid G imposed over domain D in Step 2 of Algorithm 1.
Since there are at most n non-empty cells, the overall
running time is O((knL)poly(k,L

2)). Observe that the cell-
size is at most L = 4

ε , which is independent of n.
As for the quality of approximation, let 0 < ε ≤ 1 be a

given parameter. Let OPT denote the size of an optimal
solution A. By the previous discussion, we know that
each element of A, a unit square, can intersect (1) one
vertical line and no horizontal line, or (2) one horizontal
line and no vertical line, or (3) one vertical and one
horizontal line, i.e. it can contain exactly one grid point
of G, or (4) lie entirely in a cell of G. Now consider
some q ∈ A. If q is of type (1) or (2), note that q then
intersects exactly two cells C ,C ′ of G. In this case, we
will create another copy q′ of q and move q to C and q′

to C ′ taking care that A∪{q′} remains a k-anonymizer,
although not of minimum cardinality anymore. If q is
of type (3), then we will create three more copies of it
and distribute the four of them among the four cells of
G that q intersects. By performing these operations on
every element of A of type (1), (2), or (3) we create a
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new k-anonymizer A′ with the property of having each
element inside some cell of G.
Let us denote by OPT ′ the size of the solution ob-

tained by Algorithm 1. Let C be a cell of G and ob-
serve that the local solution given by A′ on C must be
at least as large as the local solution provided by Al-
gorithm 1, since the latter is optimal for C . Therefore
we obtain that OPT ′ ≤ |A′|. We can think of A′ as a
version of A with a penalty. Note that by the random
offset r of G, an element Q of A can intersect a verti-
cal or horizontal line with probability 1

L
, since r takes

values from 0 to L − 1, and Q is a unit square, so Q

gets penalized only in one out of the L unit intervals of
[0, L]. Note as well that Q intersects a vertical and a
horizontal line independently, so the expected penalty
of Q is 1 · p1 + 1 · p2 + 3 · p3 + 0 · p4, where pi is the
probability that Q is of type (i). We obtain (using the
fact that L = 4

ε ):

E[Penalty of Q] =
1

L

(

1−
1

L

)

+
1

L

(

1−
1

L

)

+
3

L2

=
2

L
+

1

L2
≤

3

L
.

Therefore, E[OPT ′] ≤ E[|A′|] ≤ |A| + |A| · 3
L

=
(

1 + 3
L

)

OPT < (1 + ε)OPT .
�

Note that all arguments carry over to higher dimen-
sions. We summarize the result in the following theo-
rem, which implies Theorem 2 for general dimension d

by setting L = 2d/ε. We leave the details of the proof
for the full version of this paper.

Theorem 6 Let Q ⊂ D be a set of n unit boxes in d

dimensions, and let L = 2d
ε . Then Algorithm 1 com-

putes a k-anonymizer of Q of size at most (1 + ε)OPT

in time O
(

(kdnL)poly(k,L
d)
)

.

Finally, observe that the random offset r is an integer
in the interval [0, L− 1]. Since the expected size of the
computed k-anonymizer is (1+ ε)OPT , we can try each
possible value of r , and pick the smallest k-anonymizer.
This derandomizes Algorithm 1 adding a factor of L to
the running time.

5 Conclusions

In this paper, we presented a new notion of k-anonymity
that uses fake data to achieve anonymity assuming that
queries are broad. We studied the complexity of the
associated optimization problem in a geometric frame-
work, which allowed us to leverage techniques avail-
able in computational geometry. We proved strong NP-
completeness and gave a PTAS in fixed dimensions and

for constant k . Note that this is mostly of theoretical
interest: the exponent in the running time is very large,
even in two dimensions and for small k . It is still not
clear whether the exact dependence on the number of
data points can be improved. One can easily imagine a
situation where the number of points is arbitrarily large
but the optimal solution remains the same for a much
smaller subset. It may be possible to sample a subset
of the input points, from which with high probability
a good approximation may be obtained by using our
algorithm on the sample.
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Appendix A. Figures

Figure 3: Bend gadget (dual) and unit squares that cover
neighboring patches.

Figure 4: Clause gadget (dual) corresponding to clause
(x ∨ y ∨ z) and k-anonymizer encoding the assignment
x = false, y = true, z = false.

Appendix B. Proofs

Proof of Lemma 4 By Lemma 3 we know that there
exists a k-anonymizer of minimum cardinality whose el-
ements have their vertices at grid points of GQ, so it
is enough for us to look for candidate elements only at
those locations. However, we do not know how big the
smallest k-anonymizer will be, but we know that it can
not have size larger than kL2, since a trivial solution
would be to impose a unit grid over the domain and use
k times each of the L2 cells of this grid to be sure that
no region of Q stays non-anonymized.
With the previous conditions on the location and the
size of the k-anonymizer that we are looking for, we just
have to search using brute force over all subsets of grid
points of GQ up to size kL2, taking into consideration
that each element of this subset could appear at most
k times in an optimal solution, and keep the solution
of minimum size. By convention, when choosing a grid
point, we will choose the unit cell of GQ having this
grid point as the north-west corner, observe that this
technicality does not affect the quality of our solution.
The number of grid points in GQ is can be easily
checked to be O

�
(nL)2

�
. Now, since each grid point

can appear up to k times, we can create k copies of
each grid point, thus the number of candidate subsets
of grid points of GQ we have to check is at most:

kL2�

i=0

�
O
�
k(nL)2

�

i

�
= O

��
k(nL)2

�kL2+1
�

Note however that each time we try a subset of size i
of grid points we have to check if it is a candidate for a
solution. This can be done in polynomial time in i and
n since k-Anonymity belongs to NP, which we proved
in Section 3. The overall running time is thus of the

form O
�
(knL)poly(k,L

2)
�
.

Proof of Theorem 6 We proceed in an analogous way
to the proofs of Lemma 4 and Theorem 5, but in d-
dimensions, for d ≥ 3, we define GQ not as a grid, but
as an arrangement of hyperplanes.
Let Q ∈ Q ⊂ D be a d-dimensional unit box, still
axis-parallel. Box Q defines the following arrangement
of hyperplanes: let Hi be the hyperplane supporting one
of the sides of Q in direction 1 ≤ i ≤ d . By suitable
rotation of the space we can assume w.l.o.g. that Hi

is a “vertical” hyperplane. Make parallel copies of Hi

to the left and right of Hi , each one at unit distance
from the previous one, until we get out of the domain
D that Q is contained in. At this point we ignore the
hyperplanes outside D but we add the two hyperplanes
supporting the two sides of D that are parallel to Hi .
If D ⊆ [0, s]d (s ≥ 1) then there are O(s) hyperplanes
spawned by Q in direction 1 ≤ i ≤ d , and thus O(d · s)
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hyperplanes spawned by Q in all d directions. This last
set of hyperplanes is the arrangement of hyperplanes
defined by Q. Hence, in d-dimensions, GQ is the union
of the arrangements of hyperplanes spawned by all el-
ements of Q, along with all their lower-dimensional in-
tersections.
The reader will be able to verify now that Lemma 3
also holds with this new definition of GQ, since the
elements of a k-anonymizer of Q are aligned one di-
mension at a time, until they all sit at vertices of GQ.
As for Lemma 4, it is known that the complexity of
an arrangement of m hyperplanes in d-dimensions is
Θ(md). It is easy to check that m = O(d · n · L) if
Q is contained in a box of side-lenght L ≥ 1. Thus the
d-dimensional algorithm of Lemma 4 would run in time

O
�
(kdnL)poly(k,L

d)
�
since we only have to check sub-sets

of vertices of GQ.
Algorithm 1 imposes a grid G of cell size L over the
domain D. The d dimensional version of Lemma 4 can
be run on each non-empty cell of G, thus giving an over-
all running time of O

�
(kdnL)poly(k,L

d)
�
since there are

at most n non-empty cells of G.
As for the quality of the approximation, we now ob-
serve that an element of an optimal solution A has

�
d
1

�

possibilities of being shared by two cells,
�
d
2

�
of being

shared by four cells, and in general
�
d
i

�
possibilities of

being shared by 2i cells, with 0 ≤ i ≤ d . Hence, the
penalty in each case is 2i−1. Thus the expected penalty
of an element Q ∈ A is:

E[Penalty of Q] =

=
d�

i=0

(2i − 1)

�
d

i

�
P[Q shared by exactly 2i cells]

=
d�

i=0

(2i − 1)

�
d

i

��
1

L

�i �
1− 1

L

�d−i

=

�
1 +

1

L

�d

− 1

=
d�

i=1

�
d

i

��
1

L

�i

≤
d�

i=1

�
d

L

�i

≤ d

L

∞�

i=0

�
d

L

�i

=
d

L

�
1

1− d
L

�
=

d

L− d
=

ε

2− ε
≤ ε.

The last two inequalities follow from the fact that
L = 2d

ε > d , and 0 < ε ≤ 1.
Again, we obtain:

E[OPT �] ≤ |A|+ |A| · ε = (1 + ε)OPT .


