
© Victor Alvarez, Felix Martin Schuhknecht, Jens Dittrich, Stefan Richter, 2014. This is the author's version of
the work. It is posted here for your personal use. Not for redistribution. The definitive version was published in
Proc. of the 10th International Workshop on Data Management on New Hardware (DaMoN '14).

http://dx.doi.org/10.1145/2619228.2619231

http://dx.doi.org/10.1145/2619228.2619231

Main Memory Adaptive Indexing for Multi-core Systems

Victor Alvarez Felix Martin Schuhknecht Jens Dittrich Stefan Richter

Information Systems Group

Saarland University

http://infosys.cs.uni-saarland.de

ABSTRACT
Adaptive indexing is a concept that considers index creation in
databases as a by-product of query processing; as opposed to tra-
ditional full index creation where the indexing effort is performed
up front before answering any queries. Adaptive indexing has re-
ceived a considerable amount of attention, and several algorithms
have been proposed over the past few years; including a recent ex-
perimental study comparing a large number of existing methods.
Until now, however, most adaptive indexing algorithms have been
designed single-threaded, yet with multi-core systems already well
established, the idea of designing parallel algorithms for adaptive
indexing is very natural. In this regard, and to the best of our knowl-
edge, only one parallel algorithm for adaptive indexing has recently
appeared in the literature: The parallel version of standard crack-
ing. In this paper we describe three alternative parallel algorithms
for adaptive indexing, including a second variant of a parallel stan-
dard cracking algorithm. Additionally, we describe a hybrid paral-
lel sorting algorithm, and a NUMA-aware method based on sorting.
We then thoroughly compare all these algorithms experimentally.
Parallel sorting algorithms serve as a realistic baseline for multi-
threaded adaptive indexing techniques. In total we experimentally
compare seven parallel algorithms. The initial set of experiments
considered in this paper indicates that our parallel algorithms sig-
nificantly improve over previously known ones. Our results also
suggest that, although adaptive indexing algorithms are a good de-
sign choice in single-threaded environments, the rules change con-
siderably in the parallel case. That is, in future highly-parallel envi-
ronments, sorting algorithms could be serious alternatives to adap-
tive indexing.

1. INTRODUCTION
Traditionally, retrieving data from a table in a database is im-

proved by the use of indexes when highly selective queries are per-
formed. Among the most popular data structures that are used as
indexes we can find self-balancing trees, B-trees, hash maps, and
bitmaps. However, on the one hand, building an index requires ex-
tra space, but perhaps most importantly, it requires time. Without
any knowledge about the workload, the best hint a database has to

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
DaMoN ’14, June 22-27 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights
licensed to ACM. ACM 978-1-4503-2971-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2619228.2619231.

build an index, is to simply build it up front the first time data is
accessed. This, ironically, could slow down the whole workload of
a database. Furthermore, it could be the case that only few queries
are performed over different attributes, or it could simply be the
case that response time per query, including the very first one, is
the most important measure. In these cases, the up-front effort in
building indexes does not really pay off. On the other hand, no
index at all is in general not a solution either, as full table scans
incur very quickly in high total execution times. Hence, ideally, we
would like to have a method that allows us to answer all queries as
fast as if there were an index, but with initial response time as if
there were no index. This is the spirit of adaptive indexing.

In adaptive indexing, index creation is thought as a by-product
of query execution; thus an index is built in a lazy manner as more
queries are executed, see Figure 3. The very first adaptive index-
ing algorithm, called standard cracking, was presented in [10], and
since then, adaptive indexing has received a considerable amount
of research, see [5, 6, 7, 8, 11, 12, 13, 14, 21].

1.1 Single-threaded adaptive indexing
In our recent paper [21] we presented a thorough experimen-

tal study of all major single-threaded adaptive indexing algorithms.
Experiments shown therein support the claim that (single-threaded)
standard cracking [10] still keeps being the algorithm any other new
(single-threaded) algorithm has to improve upon, due to its simplic-
ity and good accumulated runtime. For example, in the comparison
of standard cracking [10] with stochastic cracking [8], as seen from
the experiments shown in [21], the latter is more robust, but the
former is in general faster — see Figure 4.c of [21]. With respect
to hybrid cracking algorithms [13], the experiments of [21] indi-
cate that, although convergence towards full index improves in hy-
brid cracking algorithms, this improvement can be seen only after
roughly 100–200 queries, before that, standard cracking performs
clearly better — see Figure 4.a of [21]. Moreover, as also seen in
Figure 8.a of [21], w.r.t. the total accumulated query time, standard
cracking is faster up to around 8000 queries. In all cases, stan-
dard cracking is an algorithm that is much easier to implement and
maintain.

In [21] we also observed that pre-processing the input before
standard cracking [10] is used, significantly improves the conver-
gence towards full index, robustness, and total execution time of
standard cracking. This pre-processing step is just a range-par-
titioning over the attribute to be (adaptively) indexed. For sim-
plicity we will refer from now on to this adaptive indexing tech-
nique simply as the coarse-granular index, just as it is referred to
in [21]. From the experiments of [21], the improvement of the
coarse-granular index over all other adaptive indexing techniques
considered therein can clearly be seen, see Figures 7.a and 7.b
of [21]. However, the coarse-granular index also incurs in a higher

initialization time, which, as discussed previously, is in general not
desirable.

1.2 Representative single-threaded experiment
Taking the experiments of [21] as a reference, we have run a

small, but very representative, set of experiments considering what
we believe are the three best adaptive indexing algorithms to date
— standard cracking [10], hybrid crack sort [13], and the coarse-
granular index [21]. We additionally compare these methods with
sorting algorithms.

The purpose of these experiments is not to reevaluate our own
material of [21], but rather to make this paper from this point on
self-contained. Also, these experiments represent the baselines for
the multi-threaded algorithms shown later on — these experiments
are the entry point of all other experiments herein presented.

The source code used for this representative set of experiments
is a tuned version of the code we used in [21]. The workload under
which we test the algorithms is defined in Section 1.3 below, and
the experimental set-up is given in Section 4.

 0

 5

 10

 15

 20

 25

 1 10 100 1000 10000

A
cc

u
m

u
la

te
d
 Q

u
e
ry

 R
e
sp

o
n
se

 T
im

e
 [
s]

Query Sequence

1 Thread, 100 Million Elements

Standard Cracking (SC)

Hybrid Crack Sort (HCS)

Coarse-granular Index (CGI)

Radix Sort (RS)

STL std::sort (STL-S)

Figure 1: Total time of the single-threaded algorithms over 10,000
random queries.

The results of this first set of experiments can be seen in Fig-
ure 1. The most important message, at this point, is that the reader
can rest assured that these experimental results are fully consistent
with the ones already found in the literature, in particular with our
own comprehensive comparison of single-threaded adaptive index-
ing algorithms presented in [21]. In particular, for a moderately
large number of queries, we see that adaptive indexing algorithms
achieve a high speedup over sorting algorithms, typically used for
building full indexes. Thus, in single-threaded environments, adap-
tive indexing is a viable option in practice.

1.3 Workload
In line with previous work [5, 6, 8, 10, 13, 14, 21], we assume

a main-memory column-store with 100 million tuples (which we
also increase to 1 billion tuples later on), filled with 4-byte positive
integers generated at random, w.r.t. the perfect uniform distribu-
tion over the interval

⇥
0, 232

�
. Each entry in the cracker column

is then represented as a pair (key, rowID) of 4-byte positive in-
tegers each. We are uniquely interested in analytical queries, thus
we assume that no query performs updates on the database. To be
more precise, we are interested in the following type of queries:

SELECT SUM(R.A) FROM R WHERE ql  R.A < qh

That is, each query has to filter the data from A and perform
a simple aggregation over the set of results. The cracker column

will always be clear from the context, thus, a query q can then be
represented simply as a pair (ql, qh). We perform 10, 000 queries
generated uniformly at random (which we change to skewed distri-
bution later on), each having its selectivity set at 1%. As in previous
work, we assume that queries are independent from each other and
are performed sequencially as they arrive. Also, we assume no idle
time in the system, i.e., the cracker column is allocated immedi-
ately after the very first query arrives. Every measurement was run
ten times. The input of the i-th run is the same for every algorithm,
but any two different runs were generated completely independent
from each other. The times reported for each algorithm are the
average times over those ten runs. In all experiments we project
only the index attribute. This means that no base table access is
performed. In Section 1.5 we elaborate more on the considered
workload.

1.4 The contributions of this paper
All algorithms tested in [21] are single-threaded, and actually, al-

most all adaptive indexing algorithms in the literature are designed
for single-core systems. With multi-core systems not only on the
rise, but actually well established by now, the idea of parallel adap-
tive indexing algorithms is very natural.

To the best of our knowledge, the work presented in [5, 6] is
the only (published) work, so far, that deals with adaptive indexing
in multi-core systems. Therein, a parallel version of the standard
cracking algorithm of [10] is presented.

We are now ready to list the contributions of this paper:

(1) First and foremost, the most important contribution of this
paper is the (critically) experimental evaluation of many par-
allel algorithms (six to be precise), for adaptive indexing as
well as for creating full indexes — including the algorithm
of [5, 6]. This work can be considered the very first experi-
mental study of parallel adaptive indexing techniques.

(2) We describe three (natural) alternative parallel algorithms
for adaptive indexing, one based on standard cracking [10],
while the other two are based on the coarse-granular index
presented in [21].

(3) We describe a hybrid parallel sorting algorithm. This algo-
rithm greatly resembles the parallel radix sorting algorithms
presented in [15, 18, 20]. Additionally, we present another
method that further improves upon this hybrid parallel sort-
ing algorithm by adding NUMA-awareness.

(4) The initial set of experiments considered in this paper sug-
gests that our algorithms significantly improve over the meth-
ods presented in [5, 6]. Moreover, these experiments also
indicate that, as opposed to the story with single-threaded al-
gorithms where sorting algorithms are no match in practice
against adaptive indexing techniques, parallel sorting algo-
rithms could become serious alternatives to parallel adaptive
indexing techniques.

Table 1 gives an overview of all algorithms considered in this pa-
per. Throughout the paper, due to lack of space, we mostly refer to
the algorithms by their short names. Thus, for an easier distinction
between single- and multi-threaded algorithms, the short name of
each multi-threaded algorithm starts with a P.

1.5 How is this paper not to be understood

(1) We are fully aware of all prior work in adaptive indexing,
including the very recent paper of Graefe et al. [6]. In this

Algorithm Reference Description Short name Implementation used
Standard cracking [10] B.1 SC [21]
Hybrid crack sort [13] [13] HCS [21]
Coarse granular index [21] B.2 CGI [21]
Radix sort [17] B.3 RS [21]
STL sort (C++) [22] [22] STL-S C++ STL
Parallel standard cracking [5, 6] § 2.1 P-SC [5]
Parallel-chunked standard cracking This paper § 2.1 P-CSC Ours
Parallel coarse-granular index This paper § 2.2 P-CGI Ours
Parallel-chunked coarse-granular index This paper § 2.2 P-CCGI Ours
Parallel range-partitioned radix sort This paper § 2.3 P-RPRS Ours
Parallel-chunked radix sort This paper § 2.3 P-CRS Ours

Table 1: All algorithms considered in this paper along their original references, their short names, and the implementations used in this paper.

regard, it is not the purpose of this paper to present parallel
versions of every single adaptive indexing algorithm in the
literature. Our previous experimental study [21] helped us to
narrow down our options to the adaptive indexing techniques
that show real potential for parallelization.

(2) The workload considered in this paper, given in Section 1.3,
is fully equivalent to what has been considered in the litera-
ture so far — most of the work has used this sort of work-
load (integer-filled single-column) as an entry case of study,
and actually, only the work presented in [12, 21] has gone
to a more realistic workload. Thus, this paper should be
considered as the entry point towards a thorough study of
multi-threaded adaptive indexing techniques. Moreover, the
multi-threaded standard cracking algorithm presented in [5,
6] — which happens to be the only one so far — has only
been compared against single-threaded methods. We feel
that once multi-threaded environments enter the picture, many
natural choices for multi-threaded adaptive indexing enter
the picture as well. It is also our purpose to compare the
algorithm of [5, 6] against these natural choices.

The implementations used in this paper are described in Table 1
on an algorithm basis. These implementations will be made avail-
able upon publication of the paper.

1.6 The structure of this paper
The remainder of the paper is structured as follows: In Section 2

we briefly describe the algorithms to be tested. In Section 3 we give
our experimental setup. In Section 4 we give a precise definition of
the workload used to test the algorithms, and show the results of our
experiments. In Section 5 we close the paper with our conclusions.
For completeness, the reader can find in the appendix a discussion
about the observed speedups (Appendix C) as well as additional
experiments (Appendix D) showing the effect of varying different
parameters of the workload, such as input size, tuple configuration,
query access pattern, and query selectivity.

2. ALGORITHMS
In this section we give a short description of all parallel algo-

rithms to be tested. The main part of this work contains no de-
scription of the single-threaded algorithms considered due to lack
of space. These descriptions can be found in the Appendix B.

Throughout the paper we will denote by A the original column
(attribute) we want to perform queries on, by B the corresponding
cracker column, see Figure 3, by n the number of entries in A,
and by k the number of available threads. To make the explanation
simpler, we will assume that n is perfectly divisible by k. In the
experiments, however, we do not make this assumption.

2.1 Parallel standard cracking
In [5, 6] a multi-threaded version of standard cracking was shown,

which we will be denoted by P-SC from now on. To describe this
multi-threaded version it suffices to observe that, in standard crack-
ing (SC), as more queries arrive, they potentially partition indepen-
dent parts of B, and thus, they can be performed in parallel.

When a query comes, it has to acquire two write locks on the bor-
der partitions, while all partitions in between are protected using
read locks. When two or more queries have to partition, or aggre-
gate over the same part of B, read and write locks are used over the
relevant parts. That is, whenever two or more queries q1, . . . , qr ,
r � 2, want to partition the same part of B, a write lock is used to
protect that part; say qi, 1  i  r, obtains the lock and partitions
while the other queries wait for it to finish. After qi has finished,
the next query qj , i 6= j, acquiring the lock has to reevaluate what
part it will exactly crack, as qi has modified the part all queries
q1, . . . , qr were originally interested in. Clearly, as more queries
are performed, the number of partitions in B increases, and thus
also the probability that more queries can be performed in parallel.
This is where the speedup of this multi-threaded version over the
single-threaded version stems from. If two or more queries want to
aggregate over the same part of B, then they all can be performed in
parallel, as they are not physically reorganizing any data. However,
if one query wants to aggregate over a part of B that is currently
being partitioned by another query, then the former has to wait until
the latter finishes, as otherwise the result of the aggregation might
be incorrect. Also, all queries work with the same cracker index,
thus a write lock occurs each time the cracker index is updated.

As the initialization time of P-SC we consider the time it takes
to copy A onto B in parallel — in contrast to SC, where this ini-
tialization is done single-threaded. That is, for k available threads,
we divide A and B into k parts and assign exactly one part to each
thread. Every thread copies its corresponding part from A to B.

We immediately see two drawbacks with this multi-threaded ver-
sion of standard cracking, which will also become apparent in the
experiments: (1) The effect of having multiple threads will be vis-
ible only after the very first executed query has partitioned B. Be-
fore that, B consists of only one partition, and all other queries will
have to wait for this very first query to finish. That is, the very
first crack locks the whole column. (2) Locking incurs in unwanted
time overheads.

To address these concerns we describe in this paper another ver-
sion of parallel standard cracking, which as we will see, seems to
perform quite good in practice, in particular, better than P-SC.

Parallel-chunked standard cracking (P-CSC). After copying
A onto B in parallel, as in P-SC, we (symbolically) divide B into k

parts, each having n
k elements, and every thread will be responsible

for exactly one of these parts. Now, every query will be executed
by every thread on its corresponding part, and every thread will

aggregate its results to a local variable assigned to it. At the end a
single thread aggregates over all these local variables.

It is crucial for the performance of P-CSC to ensure complete
independence between the individual parts. Any data that is un-
necessarily shared among them can lead to false sharing effects
(propagation of cache line update to a core although the update did
not affect its part of the shared cache line) and remote accesses
to memory attached to another socket. Thus, each part maintains
its own structure of objects, containing its local data, cracker in-
dex, histograms, and result aggregation variables. Furthermore, by
aligning all objects to cache lines, we ensure to avoid any shared
resources, and each thread can process its part in complete inde-
pendence from the remaining ones. Finally, we also pin threads
(during its lifetime) to physical cores. This gives the strong hint
that, when a thread instantiates its part — and all variables around
it — it should do so in its NUMA region.

2.2 Parallel coarse-granular index
In this paper we present two parallel versions of the coarse-

granular index (CGI) presented in [21]. For the first one it suffices
to observe that the coarse-granular index is nothing but a range par-
titioning as a pre-processing step to standard cracking (SC). Thus,
for the first parallel version of CGI, which will be denoted by
P-CGI from now on, we show how to do a range partitioning in par-
allel. Afterwards we simply run the parallel standard cracking algo-
rithm (P-SC) [5, 6] to answer the queries, taking into consideration
that B is now range-partitioned. Our method to build a range par-
tition in parallel requires no synchronization among threads, which
of course helps to improve its performance.

Parallel coarse-granular index (P-CGI). The main idea behind
the construction is very simple. Column A is (symbolically) di-
vided into k parts, of n

k elements each. Thread ti, 1  i  k, gets
assigned the i-th part of A and it writes its elements to their corre-
sponding buckets1 in the range partition on B, using r � 2 buckets.
In order to do so, and not to incur in any synchronization overhead,
every bucket of the target range partition on B is (symbolically)
divided into k parts as well, so that thread ti writes its elements in
the i-th part of every bucket. Thus, clearly, any two threads read
their elements from independent parts of A and write also to inde-
pendent parts on B, see Figure 4. All this can be implemented in
a way that all but one step are done in parallel2, and every thread
gets roughly the same amount of work. This, as we will see, helps
to improve performance as the number of threads increases.

The second parallel version of CGI does not range-partition B.
Instead, it works in the same spirit as P-CSC, thus its name.

Parallel-chunked coarse-granular index (P-CCGI). Symboli-
cally divide A again into k parts, of n

k elements each, and assign
the i-th part to the i-th thread. Each thread ti, 1  i  k, range
partitions its part using CGI, materializing it onto B. Thus, B is
also (symbolically) divided into k parts. Having done this chunked
range partition of B, thread ti keeps being responsible for the i-th
range partition of B. When a query arrives, each thread executes
SC on its part and aggregates its result in a global variable, for
which we again use a write lock to avoid any conflicts that might
occur during aggregation. Again, as for P-CSC, we ensure that
no resources are shared among the parts. All objects are cache-
line-aligned and no trips to the remote memory are necessary at
any place. The initialization time for each one of these algorithms,
CGI, P-CGI, and P-CCGI, is the time it takes to materialize the
necessary range partitions on B.

1Our implementation of range partition is radix-based.
2This step is the aggregation of an histogram used by all threads.

2.3 Parallel full indexing
So far we have only described algorithms for adaptive indexing.

However, in order to see how effective those algorithms really are,
we have to compare them against full indexes. In [21] it was ob-
served that when the selectivity of range queries is not extremely
high, as in our case, more sophisticated indexing data structures
such as AVL-trees, B+-trees, ART [16], among others, have no
significant benefit over full sort + binary search + scan for answer-
ing queries, as the scan cost (aggregation) of the result dominates
the overall query time. Therefore, for this study, we regard sorting
algorithms as a direct equivalent of full indexing algorithms. With
this in mind, and also due to (1) the good performance of build-
ing a range partition in parallel, and (2) the good performance of
the radix sort algorithm (RS) of [17], the following hybrid sorting
algorithm suggests itself:

Parallel range-partitioned radix sort (P-RPRS). Build a range
partitioning in parallel on B, as in the parallel coarse-granular in-
dex P-CGI. If the number of buckets in the range partitioning is
r = 2m, then it is not hard to see that the elements of B are now
sorted w.r.t. the m most significant bits. Now, split the buckets of
the range partitioning evenly among all k threads. Each thread then
sorts the elements assigned to it on a bucket basis using the radix
sort RS, but starting from the (m+ 1)-th most significant bit; re-
member that RS is a MSD radix sort. Since B is range-partitioned,
and sorted w.r.t. the m most significant bits, calling RS on each
bucket clearly fully sorts B in-place.

As we will see, P-RPRS performs quite good in practice. How-
ever, this algorithm suffers from a large amount of NUMA effects
as it is discussed in Appendix C.3. To alleviate this we present the
following algorithm:

Parallel-chunked radix sort (P-CRS). Symbolically divide A

into k chunks, of n
k elements each, and assign the i-th part to the i-

th thread. Each thread ti, 1  i  k, range partitions its part using
CGI, materializing it onto the corresponding chunk of B. After-
wards, each thread ti reuses the histogram of its chunk to sort these
partitions using RS starting from the (m + 1)-th most significant
bit (the range-partitioning already sorts w.r.t. the m most signifi-
cant bits). Thus, P-CRS basically applies the concept of P-RPRS
to k chunks. As for all other chunked methods, we ensure that
the chunks do not share any data structures and that all objects are
again cache-line-aligned. Thus, the threads work completely inde-
pendent from each other.

The initialization time for the parallel sorting algorithms P-RPRS
and P-CRS is clearly the time it takes them to sort. After that,
for P-RPRS the queries can be answered in parallel using binary
search; every thread will answer a different query (inter-query par-
allelism). In contrast to that, the chunked P-CRS answers the indi-
vidual queries in parallel (intra-query parallelism) by querying the
chunks concurrently.

Table 1 in Section 1.4 constitutes a summary of the algorithms
(experimentally) considered in this paper. We have decided to leave
linear scan and hybrid cracking algorithms out of the presentation
due to their high execution time, even in parallel.

3. EXPERIMENTAL SETUP
Our test system consists of a single machine having two In-

tel Xeon E5-2407 running at 2.20 GHz. Each processor has four
cores, and thus the machine has eight (hardware) threads. Hyper-
threading and turbo-boost is not supported by the processors. The
L1 and L2 cache sizes are 32 KB and 256 KB respectively per core.
The L3 cache is shared by the four cores in the same socket and
has size 10 MB. The machine has a total of 48 GB of shared RAM.

The operating system is a 64-bit version of Linux. All programs are
implemented in C++ and compiled with the Intel compiler icpc
14.0.1 [1] with optimization -O3.

We are aware that our test server (up to eight cores) might be
somewhat dated in comparison to what is nowadays available (say
64 cores or more). However, we would like to point out that run-
ning experiments on (very) large servers makes understanding the
behavior of the algorithms unnecessarily complicated — in the end
we want to obtain reasonable explanations as of why the algorithms
behave the way they do. Also, and more importantly, splitting com-
puting resources becomes important in large servers executing dif-
ferent kinds of workloads simultaneously. Thus, if certain kinds of
workloads show reasonable speedups when only using a “small”
number of threads (say four or eight), we see no reason why they
should be assigned more computing resources.

4. CORE EXPERIMENTS
To better observe the effect of the number of threads in all algo-

rithms, we ran the experiments with 2, 4, and 8 threads. For com-
pleteness, the reader can find in Appendix D an additional set of
experiments showing the effect of varying different parameters of
the workload, such as input size, tuple configuration, query access
pattern, and query selectivity.

4.1 Benchmarks considered
The experiments for one thread correspond to our small repre-

sentative experiment discussed in Section 1.2, and whose results
are shown in Figure 1. The two benchmarks considered in this
evaluation are: Initial response time, and total execution time.

From the initial response time we get an idea on how long it
takes the algorithms to start answering queries once they have been
asked to. That is, we consider the initialization time, as explained
in Section 2 for each algorithm, plus the time taken by the very first
query. For single-threaded algorithms, initial response time is the
strongest point in favor of standard cracking, and against sorting
algorithms and other adaptive indexing techniques. From Figure 1
we can observe that the single-threaded version of standard crack-
ing (SC) can perform around 750 queries while single-threaded
version of radix sort (RS) catches up. After that threshold RS be-
comes faster than SC. The comparison against STL-S (std::sort)
is even worse. The story looks very different when comparing the
single-threaded version of the coarse-granular index (CGI) against
SC. From the same Figure 1 we observe that SC can perform only
about 10 queries while CGI is building its range partitioning. After
that threshold the coarse-granular index is already faster.

From the total execution time we clearly obtain the overall speedup
of the multi-threaded algorithms over their single-threaded counter-
parts. In this regard we would like to point out that we are mainly
interested in the time it takes to perform X number of queries
(query throughput) independent of the algorithm.

Due to lack of space we show here only the figure corresponding
to the 8-threaded experiment, Figure 2.

4.2 Single-threaded vs. multi-threaded
Based on the results we obtained in the single-threaded experi-

ment, Figure 1, we now show how the parallel algorithms perform
w.r.t. their single-threaded counterparts. In this section we only
present the results of the experiments, the speedups observed are
discussed in details in Appendix C.

In Table 2 we compare all standard cracking algorithms (multi-
threaded versions were described in Section 2.1). In Table 3 we
compare all coarse-granular algorithms (multi-threaded versions
were described in Section 2.2). In Table 4 we compare all sorting

 0

 1

 2

 3

 4

 5

 6

 1 10 100 1000 10000

A
cc

u
m

u
la

te
d
 Q

u
e
ry

 R
e
sp

o
n
se

 T
im

e
 [
s]

Query Sequence

8 Threads, 100 Million Elements

P-SC

P-CSC

P-CGI

P-CCGI

 P-RPRS

P-CRS

Figure 2: Total time of the 8-threaded algorithms over 10,000 ran-
dom queries.

algorithms (multi-threaded versions were described in Section 2.3).
It is worth noting that we also test the parallel radix sort algorithm
presented in [18]; which was therein reported to be very fast in
practice. However, the two parallel radix-based algorithms (P-
RPRS and P-CRS) described here turned out to be faster, so we
decided to leave the algorithm of [18] out of the discussion. The
complete set of experiments (including the algorithm of [18]) can
be found in the extended version [3] of this work.

In all tables, times are reported in seconds. The speedup re-
ported is w.r.t. the single-threaded version of the respective algo-
rithm. The absolute best times among all algorithms, w.r.t. the
number of threads and benchmarks, are highlighted in blue.

It comes as no surprise that multi-threaded versions of the al-
gorithms performed better than the single-threaded ones. With re-
spect to absolute initial response time, we can see that P-CSC is the
fastest algorithm, followed by P-SC and P-CCGI. Yet, it is quite
interesting to see that sorting algorithms profited from parallelism
the most — the highest speedups are observed there, up to 7.903⇥
speedup for eight threads. That is, we are now able to build a full
index over the main column A eight times faster.

With respect to total execution time, the fastest algorithm turned
out to be P-CCGI, followed rather close by P-CRS and P-CSC —
the chunked methods turned out to be the fastest w.r.t. total execu-
tion time, where we can see a five-fold increase in speed for eight
threads. See Appendix C for a discussion on the observed speedups
(for both benchmarks considered).

Algorithm Threads Initial Speedup Total Speedup
time time

SC 1 0.8076 1⇥ 18.14 1⇥
P-SC 2 0.6617 1.22⇥ 13.82 1.313⇥
P-CSC 2 0.4067 1.986⇥ 9.051 2.004⇥
P-SC 4 0.5744 1.406⇥ 8.225 2.205⇥
P-CSC 4 0.2093 3.859⇥ 4.95 3.664⇥
P-SC 8 0.5863 1.377⇥ 5.957 3.044⇥
P-CSC 8 0.1178 6.859⇥ 3.344 5.423⇥

Table 2: Comparison of standard cracking algorithms. Times are
shown in seconds.

5. CONCLUSIONS
The most important lessons learned from the initial set of exper-

iments presented in this work are the following:

1. Let us assume for one moment that a system has to decide
whether to use the standard cracking algorithm of [5, 6, 10]

Algorithm Threads Initial Speedup Total Speedup
time time

CGI 1 2.483 1⇥ 14.43 1⇥
P-CGI 2 1.488 1.668⇥ 10.9 1.324⇥
P-CCGI 2 1.243 1.997⇥ 7.212 2.001⇥
P-CGI 4 0.7456 3.33⇥ 6.086 2.371⇥
P-CCGI 4 0.6293 3.946⇥ 4 3.608⇥
P-CGI 8 0.4032 6.158⇥ 4.345 3.321⇥
P-CCGI 8 0.3436 7.226⇥ 2.867 5.033⇥

Table 3: Comparison of coarse-granular index algorithms. Times
are shown in seconds.

Algorithm Threads Initial Speedup Total Speedup
time time

RS 1 6.201 1⇥ 15.91 1⇥
P-RPRS 2 2.894 2.143⇥ 9.833 1.618⇥
P-CRS 2 2.792 2.221⇥ 8.038 1.98⇥
P-RPRS 4 1.467 4.227⇥ 5.306 2.999⇥
P-CRS 4 1.485 4.176⇥ 4.453 3.574⇥
P-RPRS 8 0.7846 7.903⇥ 4.163 3.823⇥
P-CRS 8 0.797 7.78⇥ 2.94 5.413⇥

Table 4: Comparison of sorting algorithms. Times are shown in
seconds.

or build a full index. For this, the system schedules X � 1
number of threads. From our experiments we can see that
a sorting algorithm pays off earlier as X increases. For in-
stance, the crossing point between the single-threaded algo-
rithms — standard cracking algorithm (SC) and radix sort
(RS) — is around 750 queries, see Figure 1. When X = 2,4,8,
the crossing point moves to around 100, 10, 2 queries, re-
spectively, between P-SC [5, 6] and P-RPRS. Figure 2 rep-
resents the case X = 8. This is a strong argument in favor
of parallel sorting algorithms.

2. The parallel adaptive indexing techniques presented in this
paper (P-CSC, P-CGI, P-CCGI) improve upon the existing
adaptive indexing algorithm [5, 6] in terms of query through-
put. This improvement is achieved by minimizing synchro-
nization among threads. There is however a fundamental dif-
ference between the algorithm P-SC of [5, 6, 10] and our
algorithms. While the former assigns one thread per query
(inter-query parallelism), the latter three assign many threads
to a query (intra-query parallelism). In realistic environments,
servers have several sockets, each consisting of many cores.
Therefore, we do not see the assumption of assigning mul-
tiple threads to a query unrealistic — speedups seem to be
fairly good already when assigning only four threads per
query.

3. This work considers the basic workload already used multi-
ple times in the literature [5, 6, 8, 10, 13, 14, 21]. This work-
load, if not too realistic, serves as a good initial case of study
and helps to (easily) identify strengths and weaknesses of the
tested algorithms. In this regard, only the work of [12, 21]
has gone to a more realistic workload, which we are cur-
rently exploring: multi-selection-, multi-projections queries
working on an entire table instead of only on a single index
column. This in particular includes tuple-reconstruction, and
is being considered on a larger multi-core machine.

Acknowledgement
We would like to thank Felix Halim and Stratos Idreos for kindly
providing the source code for P-SC used in [5, 6]. Research par-
tially supported by BMBF.

References
[1] Intel R� Composer XE Suites. http://software.intel.com/

en-us/intel-composer-xe.
[2] Intel R� VTune

TM
Amplifier XE 2013. http://software.

intel.com/en-us/intel-vtune-amplifier-xe.
[3] V. Alvarez, F. M. Schuhknecht, J. Dittrich, and S. Richter. Main mem-

ory adaptive indexing for multi-core systems. Computing Research
Repository (CoRR), April 2014. Available at http://arxiv.
org/abs/1404.2034.

[4] C. Balkesen, G. Alonso, and M. Ozsu. Multi-core, main-memory
joins: Sort vs. hash revisited. Proceedings of the VLDB Endowment,
7(1), 2013.

[5] G. Graefe, F. Halim, S. Idreos, H. Kuno, and S. Manegold. Concur-
rency control for adaptive indexing. Proceedings of the VLDB Endow-
ment, 5(7):656–667, 2012.

[6] G. Graefe, F. Halim, S. Idreos, H. Kuno, S. Manegold, and B. Seeger.
Transactional support for adaptive indexing. The VLDB Journal,
pages 1–26, 2014.

[7] G. Graefe, S. Idreos, H. Kuno, and S. Manegold. Benchmarking adap-
tive indexing. In Performance Evaluation, Measurement and Charac-
terization of Complex Systems, pages 169–184. Springer, 2011.

[8] F. Halim, S. Idreos, P. Karras, and R. H. Yap. Stochastic database
cracking: Towards robust adaptive indexing in main-memory column-
stores. Proceedings of the VLDB Endowment, 5(6):502–513, 2012.

[9] C. A. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.
[10] S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In

CIDR, pages 68–78, 2007.
[11] S. Idreos, M. L. Kersten, and S. Manegold. Updating a cracked

database. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 413–424. ACM, 2007.

[12] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing tuple re-
construction in column-stores. In Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of data, pages 297–
308. ACM, 2009.

[13] S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging what’s
cracked, cracking what’s merged: adaptive indexing in main-memory
column-stores. Proceedings of the VLDB Endowment, 4(9):586–597,
2011.

[14] M. L. Kersten and S. Manegold. Cracking the database store. In CIDR,
pages 213–224, 2005.

[15] S. Lee, M. Jeon, D. Kim, and A. Sohn. Partitioned parallel radix sort.
Journal of Parallel and Distributed Computing, 62(4):656–668, 2002.

[16] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful
indexing for main-memory databases. In ICDE, 2013.

[17] A. Maus. Arl, a faster in-place, cache friendly sorting algorithm.
Norsk Informatik konferranse NIK, 2002:85–95, November 2002.

[18] A. Maus. A full parallel radix sorting algorithm for multicore pro-
cessors. Norsk Informatik konferranse NIK, 2011:37–48, November
2011.

[19] R. Pagh and F. Rodler. Cuckoo hashing. In ESA 2001, volume 2161,
pages 121–133. Springer Berlin Heidelberg, 2001.

[20] L. Rashid, W. M. Hassanein, and M. A. Hammad. Analyzing and
enhancing the parallel sort operation on multithreaded architectures.
The Journal of Supercomputing, 53(2):293–312, 2010.

[21] F. M. Schuhknecht, A. Jindal, and J. Dittrich. The uncracked pieces in
database cracking. Proceedings of the VLDB Endowment, 7(2), 2013.

[22] A. Stepanov and M. Lee. The standard template library, volume 1501.
Hewlett Packard Laboratories 1501 Page Mill Road, Palo Alto, CA
94304, 1995.

http://software.intel.com/en-us/intel-composer-xe
http://software.intel.com/en-us/intel-composer-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://arxiv.org/abs/1404.2034
http://arxiv.org/abs/1404.2034

APPENDIX
A. COMPLEMENTARY FIGURES

A B BQ2: SELECT A FROM R
WHERE 70  R.A < 80

adapt while copying in-place

31
66

92
53
71

79

40
67
19
10

60

23

35

15

15
10

19
31
35

79

40
67
92
66

60

23

71

53

< 26, 4 >

< 36, 6 >

Q1: SELECT A FROM R
WHERE 26  R.A < 36

T

15
10

19
31
35

66

40
67
71
79

60

23

53

91

< 36, 6 >

< 70, 11 >

T

< 80, 13 >

< 26, 4 >

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 3: Adaptively indexing attribute A using two queries
(Q1, Q2), and using standard cracking [10]. Column B is a copy
of A on which future queries are performed. B is called the cracker
column in the literature. T is called the cracker index, and it tells
future queries how B is currently partitioned. These two structures
together, B and T , replace a traditional index. A node hx, yi in T

tells that all elements of B strictly larger than x start at position y.

A B

tk

t2
t1

t1

tk

t2

n
k

...

...

Figure 4: In parallel coarse-granular index (P-CGI), column A is
(symbolically) divided into k parts of n

k elements each. Cracker
column B is range-partitioned using r buckets. Every bucket of
the range partition of B is also (symbolically) divided into k parts.
Thread ti, 1  i  k, writes to the i-th part of every bucket.

B. SINGLE-THREADED ALGORITHMS

B.1 Standard cracking (SC)
This is the first adaptive indexing algorithm that appeared [10],

and also the most popular one due to its simplicity and good per-
formance. This algorithm is by now well-known, and it can be
described as follows: Let q = (ql, qh) be a query, with ql < qh.
In its simplest version, in order to filter out the results, standard
cracking performs two partition steps of quicksort [9] over B, each
one taking ql and qh as their pivots respectively. The split loca-
tion of each partition step is then inserted into the cracker index,
using ql and qh as the keys, so that future queries can profit from
the work previous queries have already done, see Figure 3. This
incrementally improves query response times of standard cracking,
as partitions become smaller over time.

The method of performing two partition steps is called 2x-crack-
in-two in [10], but the authors also observed that both partition
steps can be combined into a single one, which they call crack-
in-three. Experiments shown in [21] suggest that 2x-crack-in-two
performs better than crack-in-three most of the time, and when it

does not, the difference is small. Thus, the used implementation of
standard cracking performs only 2x-crack-in-two steps. Finally, it
is important to know that the initialization cost of standard cracking
is only that of creating the cracker column B, i.e., copying column
A onto B before performing the very first query.

B.2 Coarse-granular index (CGI)
In [21] a new adaptive indexing technique, therein called the

coarse-granular index, was presented. This technique range-partitions
B as a pre-processing step3. That is, the range of values of the keys
of B is divided into r � 2 buckets4, such that the first bucket con-
tains the first n

r largest values in B, the second bucket contains the
second n

r largest values, and so on. For the sake of explanation, we
assume that n is divisible by r. In the experiments, however, we
do not make this assumption. The keys inside each bucket are in
any arbitrary order. Once B has been range-partitioned, the posi-
tion where each bucket ends is inserted in a cracker index T , and
standard cracking SC is run on B to answer the queries; taking T

into consideration.
Range partitioning B gives standard cracking a huge speed-up

over standard cracking alone, see Figure 1. As it turns out, this
range partitioning can be done very fast; the elements of A can be
range-partitioned while being copied to B. This requires only two
passes over A. Also, as we pointed out in [21], CGI converges
faster towards full index than SC, and is also more robust w.r.t.
skewed queries. However, CGI incurs in relatively high initializa-
tion time w.r.t. SC, see Figure 1. There, it can be seen that SC can
perform around 10 queries while CGI is still range-partitioning,
after that, CGI pays off already.

B.3 Radix sort (RS)
The single-threaded sorting algorithm used in our experiments

is the one presented in [17]. This algorithm was also used in [21],
where it was reported to be very fast. This algorithm is a recursive
(in place) Most Significant Digit radix sort, called left radix sort
in [17].

What the algorithm of [17] does to work in place is the following:
The input gets (symbolically) divided into r = 2m buckets, where
m is the number of bits of the sorting digits. Thus, r represents
the number of different values of the sorting digits. Now, instead
of exchanging the keys between two arrays according to the value
of the keys in the sorting digit, as in a traditional radix sort, the
algorithm of [17] works in permutation cycles à la Cuckoo [19].
That is, it places an element in its correct bucket, w.r.t. the value
of its sorting digit. In doing so, it evicts another element which is
then placed in its correct bucket, as so on and so forth. Eventually,
an element gets placed in the bucket of the very first element that
initiated this permutation cycle. Then, the next element that has
not been moved yet starts another permutation cycle, and so on.
Eventually, all elements get moved to their corresponding buckets.
At that point, the algorithm recurs in each of the r bucket that the
input was (symbolically) divided into. This ensures that all the
work done previously is not destroyed. In our implementation we
treat the numbers as four-digit numbers — radix-28 numbers. That
is, r = 256. Thus, only four passes are necessary for sorting.

3If there is a bias in the distribution of the keys, an equi-depth par-
tition could be used instead of a range partition; at the expense of
more pre-processing time.
4In the core part of our experiments, as in the ones shown in [21],
we set r = 1024, since that was the value for which the best per-
formance was observed. When increasing the size of the input by a
factor of ten we set r = 8192.

C. DISCUSSING THE SPEEDUPS
As we explained in Section 2, most of our algorithms are lock-

free, and are highly parallelizable. Still, we can observe that for
k threads, the speedups obtained are not always k-folded. To un-
derstand this phenomenon, we have profiled our algorithms with
Intel Vtune Amplifier XE 2013 [2]. This tool allows us to gather
all sorts of information about a running program, such as consumed
memory bandwidth (GB/s), cpu utilization, cache misses, lock con-
tention, among many others. We have carefully analyzed all the
considered algorithms for all considered number of threads. Here,
however, we do not discuss each single algorithm in each one of the
considered configurations, we will rather pick a representative sub-
set of all configurations and give the explanations for them. Finally,
we would like to point out that profiling runs of the algorithms are
slower than the regular runs, as profiling code is added for this pur-
pose.

Figure 5: The highest rate at which memory is consumed in P-CRS
is 36.773 GB/s. The colors indicate the different stages of the algo-
rithm (from left to right): (1) Histogram creation, (2) Materializing
the range-partitioning, (3) Radix sorting, and (4) Query answering.

Figure 6: The highest rate at which memory is consumed in P-SC
is 31.111 GB/s. The colors indicate the different stages of the al-
gorithm (from left to right): (1) Copying the input to the cracker
column, (2) Cracking and query answering. In the very beginning,
up to around the 3-seconds mark, waiting times hinder scalability.
After that threshold there are enough partitions in the cracker col-
umn so that all threads can work mostly concurrently.

Figure 7: The highest rate at which memory is consumed in
P-RPRS is 32.213 GB/s. The colors indicate the different stages of
the algorithm (from left to right): (1) Histogram creation, (2) Ma-
terializing the range-partitioning, (3) Radix sorting, and (4) Query
answering.

C.1 Chunked algorithms
All chunked algorithms, i.e., P-CSC, P-CCGI, and P-CRS, share

a large portion of code, and their implementations, as we already
pointed out, are NUMA-aware. That is, we give the system the
strong hint that each thread should work on its chunk in its own
NUMA region by pinning the working threads to physical cores of
the system. For example, for four threads, the first two threads (1,
2) will be pinned in one socket and the other two (3, 4) will be
pinned in the other socket. For eight threads, the first four threads

(1, 2, 3, 4) will be pinned in a socket, and the other four (5, 6, 7,
8) will be pinned in the other socket. We also avoid false-sharing
among threads by aligning the working data of a thread with the
boundary of the cache lines, so that for any two threads, the work-
ing data is found on different cache lines, and thus one thread does
not invalidate the cache line of any other thread.

Now, let us consider the eight-threaded version of P-CRS, see
Table 4, and let us focus on total running time. There, we see
that P-CRS achieves a speedup of only 5.413⇥, when ideally it
should achieve a speedup of 8⇥. How this algorithm utilizes the
memory bandwidth of the system can be seen in Figure 5, as re-
ported by Vtune. The highest rate at which memory was consumed
by P-CRS is 36.773 GB/s. We measured the combined memory
bandwidth of our system to be around 40 GB/s, that is, 20 GB/s
per socket. So we can conclude that memory bandwidth is not the
bottleneck of the algorithm. The real bottleneck is the following.
In order to obtain 8⇥ speedup, we should obtain 4⇥ speedup from
each socket (four threads per socket). The algorithm is highly par-
allelizable. However, we measured the speedup of each socket to
be only 2.9⇥. We measured this by scheduling a four-threaded
version of P-CRS in one socket only. The discrepancy between the
expected 4⇥ speedup and the obtained 2.9⇥ speedup comes from
the fact that the four threads are now sharing one L3 cache, the
one corresponding to the socket. If this L3 cache was four times
bigger, the configuration would be equivalent to the ideal config-
uration of having four sockets, each one having its own large L3
cache, and thus the processors would benefit from the larger cache
sizes. We simulate this experiment with a two-threaded version of
P-CRS, as we do not have a four-socket system. When this version
is scheduled on one socket only, the number of cache misses5 is
on average (over ten runs of the algorithm) 231, 060, 000 for this
socket, as reported by Vtune. When this version is scheduled on
two different sockets, the number of cache misses per socket is on
average 102, 500, 000. Overall there are 26, 060, 000 (⇡ 12%)
more cache misses on the former configuration than in the latter,
and this of course affects the scalability, going from 2⇥ speedup in
the latter configuration, to 1.8⇥ speedup in the former.

This explains the 2.9⇥ speedup of a single socket executing four
threads. This also means that the achievable speedup by fully using
both sockets (4 threads per socket) is about 2 · 2.9⇥ = 5.8⇥. Yet,
we are obtaining 5.4⇥, as reported in Table 4. This last discrep-
ancy is a NUMA effect. Even though our implementations are fully
NUMA-aware, at certain times during the execution of the algo-
rithm, the system allocates temporary variables in different NUMA
regions — even though all threads are pinned to physical cores, and
they should instantiate their data in their NUMA region. That is, ev-
ery once in a while there are local cache misses that are served by
data from a different NUMA region — we noticed that roughly 1%
of the total number of caches misses come from a different NUMA
region, this all can be seen in Vtune. It is well-known that bringing
data from a different NUMA region is more expensive than access-
ing the same NUMA region. Thus this slightly slows down the
algorithm.

We performed the very same analysis on P-CSC and P-CCGI
and we noticed the same effect — which was to be expected since
all those methods share a large portion of code. The overall num-
bers are different nevertheless, and for brevity we will not show
them here.

With these arguments we are able to explain the speedups of all
chunked methods: P-CSC, P-CCGI, and P-CRS. We will now

5The counters quantified by Vtune are
OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.LOCAL_DRAM ,
OFFCORE_RESPONSE.DEMAND_DATA_RD.LLC_MISS.REMOTE_DRAM

proceed to analyze P-SC and P-CGI, which use locks to ensure
consistency in the data.

C.2 Algorithms that are not lock-free
Among all algorithms, two are fundamentally different to the

rest. These two algorithms are P-SC [5, 6] and P-CGI, and the
difference lies in that they both use locks. As a first reference, Fig-
ure 6 shows how the eight-threaded version of P-SC utilizes the
memory bandwidth of the system. The conclusion is that memory
bandwidth is again not hindering the scalability of the algorithms.
The real bottleneck is the time each thread has to wait while another
thread is blocking the resources. Using Vtune we can obtain actual
numbers about this. We again take the eight-threaded version of
P-SC as a reference. Table 5 shows the total accumulated waiting
time of P-SC among all threads. Adding up those numbers and
dividing by the number of working threads (eight in this case) we
obtain that the real waiting time P-SC incurs in is 2.105 seconds
on average. Observe in Figure 6 that P-SC starts achieving its full
potential after the 3-seconds mark. That is, from the reported to-
tal execution time (7.3 secs) of the eight-threaded version of P-SC
shown in Figure 6, more than one-third is just waiting time.

Mutex Wait time (s)

Piece lock 11.671
Cracker index lock 5.169

Total 16.84
Average (Total by 8) 2.105

Table 5: Waiting times incurred by the eight-threaded version of
P-SC. Adding up and dividing by the number of threads we ob-
tain that 2.105 seconds out of the total execution time of P-SC are
waiting time.

As a quick reference, P-CGI builds a range-partitioning before
P-SC kicks in. This range partitioning alleviates the waiting time,
as now a thread does not have to block the whole column when
performing the very first crack. As given by Vtune, the total waiting
time of P-CGI drops to about 1 second, from the 2.1 secs of P-SC.
Thus, the range-partitioning cuts in half the waiting times.

The correctness of P-SC and P-CGI depends on the use of locks.
Therefore, waiting times will always hinder the scalability of these
algorithms.

C.3 Sorting algorithms
Let us again for the sake of brevity focus only on the eight-

threaded version of P-RPRS. How this algorithm utilizes the mem-
ory bandwidth of the system is shown in Figure 7. From that figure
we can clearly see that the sorting stage of P-RPRS scales essen-
tially linearly w.r.t. the number of working threads. So we will pass
onto discussing the speedups achieved by the query part of the al-
gorithms.

As we already mentioned, the query part of all sorting algorithms
performs a binary search to filter the elements that belong to the re-
sult, and then it (sequentially) aggregates over all those elements.
That is, there are no hidden overheads in the code executing the
queries. The poor scaling of the query part is due to NUMA ef-
fects. In contrast to the chunked algorithms, the sorted column in
P-RPRS is shared by both NUMA regions. Queries are served as
they come, and to answer a query, this query is assigned to a free
thread. This thread then jumps to the NUMA region the query be-
longs to and filters and aggregates over the corresponding elements.
Using Vtune we can quantify the cache misses that are served by
the same NUMA region, and the cache misses that are served by a

different NUMA region — and thus also being served slower. For
the former, as reported by Vtune, we obtain 175, 520, 000 cache
misses on average (over ten runs of P-RPRS). For the latter we
obtain 197, 700, 000 on average. So there are 12% more remote
cache misses as local cache misses, and overall 53% of the total
number of caches misses are remote. This strongly contrast against
the chunked algorithms for example, where the number of remote
cache misses is negligible, roughly 1% of the total.

The only way we could get rid of such a high number of NUMA
effects is by designing P-CRS. There, we sacrifice the fully sorted
column — although, if later needed, the sorted chunks can be merged
using NUMA-aware merge procedures like the ones discussed in [4].
This sacrifice, nevertheless, comes with the speedups our system
allows, as we already discussed.

D. ADDITIONAL EXPERIMENTS

D.1 Scaling input size by a factor of ten
We tested the algorithms with an input size of one billion, i.e.,

ten times larger than the input size of the previous experiments. The
scalability of the algorithms is shown in Table 6. Times are again
given in seconds. The shown factors are w.r.t. the times shown in
Tables 2 to 4 for the 8-threaded algorithms. This time nonethe-
less, all shown factors represent slowdowns due to scaling of the
input size. Other than input size, the workload is as described in
Section 1.3 — in particular, selectivity stays at 1%.

Algorithm Initial Slowdown Total Slowdown
time time

P-SC 5.328 9.087⇥ 59.69 10.02⇥
P-CSC 1.156 9.816⇥ 31.71 9.482⇥
P-CGI 5.088 12.62⇥ 40.4 9.298⇥
P-CCGI 3.414 9.934⇥ 26.64 9.29⇥
P-RPRS 9.093 11.59⇥ 42.75 10.27⇥
P-CRS 7.418 9.307⇥ 27.43 9.329⇥

Table 6: Scale factors of the algorithms when increasing input size
by a factor of ten.

We observe that all algorithms scale gracefully as the input size
increases. The slowdown is essentially linear, i.e., we observe times
that are essentially ten times slower, although sorting algorithms
suffer the most.

D.2 Different tuple configuration
Until now we have assumed that the entries in the cracker col-

umn B are pairs (key, rowID) of 4-byte positive integers each.
While this assumption seems in general reasonable, it could also
be limiting in some cases. Thus, here we show how the algorithms
perform when used with pairs (key, rowID) of 8-byte positive in-
tegers generated uniformly at random over the interval

⇥
0, 264

�
.

The results of these experiments can be seen in Table 7. Times are
shown in seconds, and the shown (slowdown) factors are w.r.t. the
times shown in Tables 2 to 4 for the 8-threaded algorithms.

Other than tuple configuration, the workload is as described in
Section 1.3. That is, there are 100 million entries, and 10, 000
queries with selectivity 1% are performed. Queries are this time, of
course, 8-byte pairs of positive integers generated uniformly at ran-
dom (respecting selectivity). For sorting, we considered the num-
bers still as radix-28 numbers, i.e., radix sort requires now twice as
many passes to fully sort the numbers, i.e., eight passes.

As we can see, there is a generalized two-fold slowdown in all
algorithms w.r.t. total execution time; as expected for a two-fold
increment in entry size. In this regard, P-CSC is being affected

Algorithm Initial Slowdown Total Slowdown
time time

P-SC 0.7122 1.215⇥ 9.887 1.66⇥
P-CSC 0.2032 1.726⇥ 5.426 1.622⇥
P-CGI 0.6675 1.656⇥ 7.958 1.831⇥
P-CCGI 0.5841 1.7⇥ 4.914 1.714⇥
P-RPRS 1.188 1.514⇥ 7.859 1.888⇥
P-CRS 1.078 1.352⇥ 5.117 1.74⇥

Table 7: Scale factors of the algorithms when increasing entry size
from 4-byte pairs to 8-byte pairs.

the least, and P-RPRS being affected the most. Initial response
time seems to scale more gracefully for all algorithms. With re-
spect to the shown slowdowns of the sorting algorithms we would
like to point out that they perform much more work than all other
algorithms. Sorting algorithms have to not only shuffle data that is
twice as big, which is where the slowdown of all other algorithms
stems from, but also they have to do twice as many passes to sort
the numbers. Thus, we think that the scale factors of sorting algo-
rithms should be considered exceptionally good.

D.3 Skewed query access pattern
So far we have seen how the algorithms scale w.r.t. to input size

and different tuple configurations. Now, we show how the algo-
rithms perform when the queries are skewed, i.e., they are no longer
uniformly distributed over the range of values the input keys fall
into. For these experiments we have generated the queries from a
normal distribution with mean 231 and standard deviation 228. That
is, queries are now tightly concentrated around 231.

As originally stated, we generated 10, 000 queries with selectiv-
ity 1%, and run the algorithms over 100 million entries of 4-byte
positive integers generated uniformly at random. The results of the
experiments can be seen in Table 8. Times are shown in seconds,
and the shown factors are w.r.t. the times shown in Tables 2 to 4
for the 8-threaded algorithms. A factor larger than one represents a
slowdown and a factor smaller than one represents a speedup.

Algorithm Initial Factor Total Factor
time time

P-SC 0.7489 1.277⇥ 6.928 1.163⇥
P-CSC 0.1286 1.092⇥ 2.81 0.8402⇥
P-CGI 0.4317 1.071⇥ 6.7 1.542⇥
P-CCGI 0.342 0.9953⇥ 2.609 0.9101⇥
P-RPRS 0.7852 1.001⇥ 4.161 0.9996⇥
P-CRS 0.7989 1.002⇥ 2.85 0.9694⇥

Table 8: Scale factors of the algorithms when queries are skewed.

We observe that, w.r.t. initial response time, P-SC was affected
the most. The explanation for that is the following. As now the
queries are tightly concentrated around a certain area, most threads
try to access the same area, but this incurs into a great deal of lock-
ing. One thread locks the region it partitions while the others are
forced to wait. Once done, this thread now has to aggregate over a
continuous region, but this region is most probably being locked by
another thread partitioning it. So, as it seems, the very first query
takes longer to finish just because more threads are accessing the
same region. This is the effect of skewness in the query access
pattern. P-CGI is also being hit due to the same argument, since
it uses P-SC after range-partitioning the input. Moreover, as all
queries are tightly concentrated around the same value, there is es-
sentially no difference between P-SC and P-CCGI, as they lock
the same areas. This of course affects P-CCGI more than P-SC.

All other algorithms are completely oblivious to query access pat-
terns. Thus, the shown factors for P-CSC, P-CCGI, and P-RPRS
are simply variations obtained from different measurements.

D.4 Varying selectivity

 0

 1

 2

 3

 4

 5

 6

10-2 10-3 10-4 10-5 10-6 10-7 10-8

A
cc

u
m

u
la

te
d

 Q
u

e
ry

 R
e

sp
o

n
se

 T
im

e
 [

s]

Selectivity

8 Threads, 100 Million Elements
P-SC

P-CSC
P-CGI

P-CCGI
 P-RPRS

P-CRS

Figure 8: Effect of varying selectivity from 10�2 (1% of the data)
to 10�8 (point query). Ten thousand queries are performed each
time.

So far, all experiments considered a selectivity of 1%, as this is
what is usually used in the literature. Nevertheless, a selectivity of
1% can be deemed to be too low for actually using an index struc-
ture at all. Also, the querying part of a query with a low selectivity
might overshadow the actual index access. Thus, in this section, we
present the results of an experiment where we vary the selectivity
from the usual 1% down to highly selective point queries in log-
arithmic steps. The total number of queries stays at 10, 000 each
time. In Figure 8 we show the accumulated query response times
for the individual methods under the variation of the selectivity.

Several observations can be made in Figure 8. First of all, a se-
lectivity higher than 10�4 (0.01%) does not affect the overall run-
time anymore, as the querying part becomes negligible. At that
point, the runtime of all methods is determined only by the in-
dex creation/maintenance. We can also see that for higher selec-
tivities, the relative order of the methods in terms of performance
changes. For a selectivity of 10�2, P-CRS performs much bet-
ter than P-RPRS. This is no longer the case for higher selectiv-
ities, in fact, P-RPRS suddenly performs at least as good as P-
CRS (or even better) from 10�3 on. The reason for this is that
the advantage of P-CRS lies in the querying part, which can be
performed locally in the chunks due to NUMA-awareness, while
P-RPRS suffers from remote accesses. When selectivity increases,
index access overshadows aggregation costs. In P-CRS all threads
work towards answering every query, while in the other methods
every thread answers a different query. That is, the former per-
forms 8 times more index accesses than the latter. Furthermore, we
can also observe that P-CGI benefits from high selectivities. From
10�3 on, its performance is very close to that of the best remaining
methods. This improvement results from the fact that from 10�3

on, a query fits into a partition of the range-partitioning. That is,
a thread must lock, in the beginning, at most two partitions of the
range-partitioning. The likelihood that any two threads require the
same partition is very small. Thus, P-CGI becomes mostly lock-
free. Overall, we can see that P-CCGI shows the best accumulated
query response time for all tested selectivities, albeit negligible dif-
ferences for high-selectivity queries.

	Introduction
	Single-threaded adaptive indexing
	Representative single-threaded experiment
	Workload
	The contributions of this paper
	How is this paper not to be understood
	The structure of this paper

	Algorithms
	Parallel standard cracking
	Parallel coarse-granular index
	Parallel full indexing

	Experimental setup
	Core experiments
	Benchmarks considered
	Single-threaded vs. multi-threaded

	Conclusions
	Complementary figures
	Single-threaded algorithms
	Standard cracking (SC)
	Coarse-granular index (CGI)
	Radix sort (RS)

	Discussing the speedups
	Chunked algorithms
	Algorithms that are not lock-free
	Sorting algorithms

	Additional experiments
	Scaling input size by a factor of ten
	Different tuple configuration
	Skewed query access pattern
	Varying selectivity

