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Abstract

Let P ⊂ R
2 be a set of n points of which k are interior

points. Let us call a triangulation T of P even if all its
vertices have even degree, and pseudo-even if at least
the k interior vertices have even degree. (Pseudo-)
Even triangulations have one nice property; their ver-
tices can be 3-colored, see [2, 3, 4]. Since one can
easily check that for some sets of points, such trian-
gulation do not exist, we show an algorithm that con-
structs a set S of at most ⌊(k + 2)/3⌋ Steiner points
(extra points) along with a pseudo-even triangulation
T of P ∪ S = V (T ).

1 Introduction

Let P ⊂ R
2 be a set of n points. Let us for a moment

suppose that along with P , we are given a parity, even
or odd, for each of its n points. Given a triangulation
T of P , we say that a vertex v of T is happy if and
only if v has a degree of the parity that was originally
set for v. If a vertex is not happy then we will say that
it is unhappy. The problem of finding a triangulation
of P that maximizes the number of happy vertices has
recently got some attention. In [1], Aichholzer et al.

showed that one can always find a triangulation that
makes at least roughly 2n/3 vertices happy, and they
also showed a configuration of points and parities that
will make at least n/108 vertices unhappy, regardless
of the chosen triangulation.

In this paper we attack a problem with the same
spirit, however, we use a different paradigm to solve
it since the result of Aichholzer et al. does not ensure
in general a solution. Let P ⊂ R

2 be as before and as-
sume that 0 ≤ k ≤ n− 3 points are inside the convex
hull Conv(P ) of P , i.e. there are k interior points.
In our setting, only those k interior points will have
a parity assigned and it will be the same for each one
of them, namely, even. Now, we look for a triangu-
lation that makes all those k interior vertices happy.
We will call such triangulations pseudo-even, or sim-
ply even in the case that also the vertices of Conv(P )
happen to have even degree. It is already known that
a maximal planar graph is 3-colorable if and only if
it is at least pseudo-even, see [4] for this characteriza-
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tion and [2, 3] for a general reference on 3-colorable
planar graphs. So pseudo-even triangulations have
at least one interesting property and we can also see
this problem as that of embedding 3-colorable planar
graphs on set of points. As one can easily check that
for some sets of points, a pseudo-even triangulation do
not exist, we will introduce extra points, also known
as Steiner points, and then we will consider the ques-
tions: how many Steiner points are sufficient and how
many are necessary to get a pseudo-even triangula-
tion T such that P ⊆ V (T )? While we still have no
answer for the latter question, we will present a non-
trivial solution for the former, namely, we will show
an algorithm with the following properties:

(i) Its output triangulation T is pseudo-even and
V (T ) = P ∪ S.

(ii) |S| ≤ ⌊(k + 2)/3⌋.
(iii) At most two Steiner points of S fall on

Conv(P ).
Note that, as T is a pseudo-even triangulation, the

Steiner points of S that are interior must also get even
degree.
This paper is divided as follows: in Section 2 we

show our construction and in Section 3 we close with
some interesting observations.

2 Points in general position

Let us quickly recall that given a polygon P , a vertex
of P is called reflex if the internal angle is larger than
180 degrees and we will call it convex otherwise.
The main result of this section is the following:

Theorem 1 Let P ⊂ R
2 be a set of n points such

that k of those points are interior points. Then we

can always obtain a pseudo-even triangulation adding

at most ⌊(k + 2)/3⌋ Steiner points to P , of which at

most two fall on Conv(P ).

Before showing the actual construction let us give
the general idea. As it was pointed out in the intro-
duction, we can talk about 3-colorable maximal pla-
nar graphs and pseudo-even triangulation unambigu-
ously. Therefore, our idea to get a pseudo-even trian-
gulation is to actually embed a 3-colorable maximal
planar graph on P with the help of at most ⌊(k+2)/3⌋
Steiner points. So we will use a 3-coloration as a mea-
sure of the correctness of our algorithm. Having de-
fined what we will actually aim at, let us start with
our construction.
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Proof. Let us fix a vertex v ∈ Conv(P ) such that
v has the lowest y-coordinate among all points in P .
Using v as a pivot, we will sort each interior point of
P by its slope with respect to v. Let p1, . . . , pk, be a
labeling, from left to right with respect to this angular
order, of the internal points of P . Let p0, pk+1 be the
left and right neighbors of v on Conv(P ) respectively.
We construct a simple polygon P from P \ {v} as

follows: we add each edge pipi+1, for 0 ≤ i ≤ k. We
call this the lower part of P and we will denote it
by L(P). Also, we consider the edges of Conv(P ) \
{p0v, pk+1v} and we call this the upper part of P and
we will denote it by U(P).
Next we will triangulate P as follows: we will scan

L(P) from left to right and we will consider the largest
chains formed by convex vertices. Note that for each
chain, the left and right endpoints must be reflex ver-
tices of P , see to the left in Figure 1. Now, for each
chain, we will make adjacent its two endpoints and
we will use its lowest convex vertex as a pivot to tri-
angulate the resulting convex polygon in case that it
has more than three vertices. These convex polygons
can be thought as “ears” that can be cut from P on
L(P). The rest of P , outside these “ears”, can be tri-
angulated in any way. See to the right in Figure 1.
If there is no convex vertex of P in L(P), then the
triangulation of P is arbitrary.

v
p0 pk+1

v
p0 pk+1

Figure 1: To the left we have the polygon P on n− 1
vertices in light gray. The convex polygons formed by
scanning L(P) from left to right are shown in dashed.
Note that each pair of consecutive convex polygons
shares at most one vertex. To the right we see a tri-
angulation T (P) of P . The dashed edges are the only
ones that are not arbitrary.

Let T (P) be the aforementioned triangulation of P .
We know that we can 3-color it, see for example [5],
and note that the only point yet to be colored is v. We
will show how to color v while keeping a 3-coloration
of T (P) by using Steiner points.
From this point on, our construction is done by

case analysis. Note that as T (P) is already 3-colored,
if all the interior vertices of P are colored by only two
colors, say i+1, i+2, 1 ≤ i ≤ 31, we could use color i
for v without violating the 3-coloration of T (P), and
hence, using the straight-line segments that connect

1Arithmetic taken modulo three

v with each vertex of L(P), we obtain a pseudo-even
triangulation T (P ).

However, in general it is not going to happen that
the interior vertices can be colored using only two
colors, hence we need to do something else in such
cases. We will proceed in a line-sweep fashion from
p0 to pk+1 with respect to the angular order given by
v.

Let us fix the color of v as the color of the small-
est chromatic class in the lower part L(P) of P using
the 3-coloration of T (P), say that color is i without
loss of generality, 1 ≤ i ≤ 3. Note that the points in
L(P) with color i are the ones causing trouble to com-
plete the desired triangulation, hence we will handle
those points depending on their kind in P , namely if
they are reflex or convex vertices of P . We will keep
the invariant that, by the time we are processing an
interior point pj , all interior points to the left have al-
ready even degree. Also note that by this time, if the
degree of pj is odd it is because pj+1 has color i, other-
wise we could join v and pj+1 and hence the conflict
is somewhere to the left or even in P , which would
contradict our invariant or the valid 3-coloration of
P .

Let us start now with our case analysis, we will
assume that we are currently processing the interior
point pj , 1 ≤ j < k.

(1) Point pj of color, say i + 1, and pj+1 of color
i is a reflex vertex. Note that if pj+2 has color i + 2,
then we could introduce the edge pjpj+2, as pj+1 has
already even degree in T (P). Hence we will assume
that pj and pj+2 have the same color.

As pj+2 is of color i+ 1, then we need to complete
the degree of both pj and pj+1 as both degrees are
odd. Here we will introduce one Steiner point s of
color i + 2 that will be adjacent, without introduc-
ing any crossing, to pj, pj+1, pj+2, v, hence of even
degree and we will add the straight-line segment be-
tween pj+2 and v, move to pj+2 and continue. See to
the left in Figure 2

(2) Point pj again of color i + 1 and pj+1 of color
i is a convex vertex. Again see that if pj+2 is of color
i + 1, as before, we introduce one Steiner point s of
color i+ 2, and exatly the same set of adjacencies as
in the case when pj+1 is reflex. See in the middle in
Figure 2.

So let us assume that pj+2 has color i + 2. Note
that, as pj+1 is a convex vertex of P , it must be part
of one of the convex polygons we first got when P got
triangulated, after all remember that the triangula-
tion T (P) is in general not arbitrary. We have now
the following sub-cases:

(2.1) The vertex pj+1 was used as a pivot in the tri-
angulation of P . Consider the convex chain C formed
by the points pj, pj+1, pj+2, . . . , pl, where pl is a re-
flex vertex. See to the right in Figure 2. Note as
well that since pj+1 was used as a pivot, all the edges



EuroCG 2010, Dortmund, Germany, March 22–24, 2010

pj+1

pj
pj+2

C

pl

v

pj+1

pj+2

s

pj

v

pj+1

pj+2

s

pj

Figure 2: The point pj is currently being processed.
Point pj+1 is of the same color i of v. If pj and pj+2

have the same color, then one Steiner point suffices
to be able to move to pj+2. To the right, pj and pj+2

have different colors and pj+1 is a convex vertex that
was used as a pivot to triangulate the convex polygon
it is part of in P .

pj+1pj+2, . . . , pj+1pl are present.
Now we distinguish between the following cases:
(2.1.1) Point pl is of color i + 1, pl+1 is of color i

and pl+2 is of color i+ 2.
We know that the union of all the triangles that

share pj+1 as a vertex forms a convex polygon C. We
will change all the adjacencies inside C as follows:
Instead of taking pj+1 as the pivot that is adjacent

to all vertices in C we will take pl−1. Now we re-
color pl−1 with color i and we will change the color of
pj+1, pj+2, . . . , pl−1 to i+2, i+1, . . . , i+2 respectively.
Note that no other color needs to be changed.
Finally we will introduce two Steiner points s1, s2

of color i+ 2, i+ 1 respectively and we will make the
following adjacencies:
(i) s1 gets adjacent to pl−1, pl, pl+1 and s2.
(ii) s2 gets adjacent to pl−2, pl−1, s1, pl+1, pl+2, v.
Additionally we introduce the edges

pj+1v, . . . , pl−2v and pl+2v. See to the left and
in the middle of Figure 3.
Look that the previous construction can always be

done without introducing any crossing. Moreover,
note that with two Steiner points we complete the
even degree of each point in the region pj , . . . , pl+2

in which there were originally two points of color i.
Thus we can move to pl+2 and continue.
(2.1.2) Point pl and pl+1 as before and pl+2 is of

color i+ 1.
We will proceed as before except that this time, the

adjacencies of s1, s2 are as follows:
(i) s1 gets adjacent to s2, pl−1, pl, pl+1, pl+2 and v.
(ii) s2 gets adjacent to pl−2, pl−1, s1 and v.
As before, we also introduce the adjacencies

pj+1v, . . . , pl−2v and pl+2v. Again, every even degree
is now completed and we can move to pl+2. See to
the right in Figure 3 for the final configuration.
(2.1.3) Point pl as before and pl+1 is of color i+2.
Note that in this case, from pj to pl+1 we are in

presence of only one vertex of color i, namely pj+1,

pl−1

pl+2
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Figure 3: If pj+1 was used as a pivot to triangulate a
convex polygon that can be cut from P , then we can
use pl−1 as the new pivot without changing the color
of pj or anything to its left. Note that pl must be
necessarily a reflex vertex of P . In the middle we see
the final configuration in the case that pl+1 is of color
i and pl+2 is of color i + 2. To the right we see the
final configuration when pl+1 is of color i and pl+2 is
of color i+ 1.

thus we will introduce only one Steiner point s1.
We will proceed as before with C and note that

this time pl−1 and pl+1 have different colors, namely
i and i + 2 respectively. Hence the degree of pl is
already even and since pl is a reflex vertex of P , we
can introduce the adjacency pl−1pl+1. Now we make
s1 adjacent to pl−2, pl−1, pl+1 and v and finally we
introduce the adjacencies pj+1v, . . . , pl−2v and pl+1v.
Note that again each even degree in pj , . . . , pl+1 is

completed and hence we can move to pl+1 and con-
tinue. See to the left in Figure 4 for the final config-
uration.
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pj−1
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Figure 4: To the left we see the final configuration in
the case that pj+1 was a pivot of color i and pl+1 is
of color i+ 2. In the middle and to the right we have
that, if pj+1 of color i was not a pivot and its neighbors
have different color from each other, then one of them
must necessarily be a pivot, in this case pj+2. So we
have to go back and remove some adjacencies that will
allow us to introduce the Steiner points appropriately.

Note that the following three cases are also possible:
(2.1.4) Point pl is of color i + 2, pl+1 is of color i

and pl+2 is of color i+ 1.
(2.1.5) Point pl and pl+1 as before and pl+2 is of

color i+ 2.

(2.1.6) Point pl as before and pl+1 is of color i+1.
However, those cases are essentially the same as
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the ones explained, so we would proceed in exactly
the same way but we will exchange the color of the
Steiner points we are introducing. The details are left
for the reader.
(2.2) In this case pj+1 of color i was not used as a

pivot and it just takes part in a convex polygon where
the pivot pj+2 is of color i + 2. This restriction in
colors arises from the fact that we are assuming that
the triangle pj, pj+1, pj+2 ∈ T (P) is well-colored, as
explained in the beginning of case (2).
Since the edge pjv is currently in the triangulation

being built, there is one triangle t using it. Let q 6∈
{pj, v} be the third vertex of such a triangle t. Note
that q lies to the left of the edge pjv and hence it
already has even degree, moreover, the color of q is
i+ 2. Now we have the following two cases:
(2.2.1) The vertex q is a Steiner point or the

quadrilateral Q = q, pj , pj+1, v is convex. Let us con-
sider only the case that Q is convex, if it is not the
case then q is a Steiner point and it can be moved as
pleased to make Q convex without affecting anything.
Thus we will flip the edge pjv for the edge qpj+1 and
introduce one Steiner point s of color i + 1 inside Q
with its incidences to the vertices of Q, see in the
middle of Figure 4.
(2.2.2) If q is not a Steiner point and Q is non-

convex, then it is not hard to see that the only possible
case is q = pj−2, and pj−1 is a reflex vertex of P of
color i. Note then that the edge e = pj−2pj must be
present in the triangulation and that pj−1 is adjacent
to no Steiner point. Hence we will remove e and we
will introduce one Steiner point s1 of color i+ 2 that
is adjacent to pj−1, pj, pj+1, s2, where s2 is another
new Steiner point of color i + 1 that is adjacent to
pj−2, pj−1, s1, pj+1, pj+2, v. We can now move to pj+2

and continue. See to the right in Figure 4.
Note that the color i of v was chosen as the color of

the smallest chromatic class in L(P) and note that its
cardinality can be at most ⌊(k+2)/3⌋. Also note that
in our analysis, we assumed that the current point
pj that we are processing is neither p0 nor pk+1 of
Conv(P ). So in the case that those two extreme ver-
tices are of color i we will introduce two Steiner points
of color different that i that will subdivide the edges of
Conv(P ) that connect p0 and pk+1

with v, and hence
removing any possible conflict at that stage. As we in-
troduce one Steiner point per element of the smallest
chromatic class in L(P) the total number of Steiner
points is ⌊(k + 2)/3⌋ and the result follows.

�

3 Conclusions and Discussion

We have presented an algorithm that produces a
pseudo-even triangulation adding at most ⌊(k+2)/3⌋
Steiner points to a given point set P ⊂ R

2. It is im-
portant to note that at most two Steiner points lie

on Conv(P ) and hence our construction keeps many
extent measures of P , i.e. diameter, width, etc. If we
do not care about modifying Conv(P ) or the position
of the Steiner points, then only two Steiner points far
away from Conv(P ) would do the job, say one at ∞
and the other at −∞. Albeit being this construction
possible, we do not know why it would be interesting
to use it, since the output set of points does not look
anything like the one that was given as the input.
For the sake of completeness it is also interesting

to discuss what happens when P is in convex position
and we look this time for an even triangulation. In [4]
it was proven that if T is an even triangulation, then
|Conv(V (T ))| ≡ 0 mod 3. The other direction can
be easily proven by induction, so we do not see the
necessity of writing down the details. Hence, given P
in convex position, we can obtain an even triangula-
tion T adding at most two Steiner points such that
V (T ) remains in convex position.
We are aware that our technique could be push fur-

ther to obtain a smaller number of Steiner points,
probably ⌊(k+2)/6⌋ might be doable and we already
started working out the details. Nevertheless, what it
has been rather frustrating is the fact that we have not
been able to come up with a lower bound on the num-
ber of Steiner points and actually, everything points
to the fact that really few Steiner points might suffice,
this number might even be constant ! Finding a simple

algorithm that uses fewer Steiner points, and finding
a lower bound for this number seem interesting and
challenging.
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