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Colored Quadrangulations with Steiner Points
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Abstract

Let P be a k-colored set of n points in general position
on the plane, where k > 2. A k-colored quadrangula-
tion of P is a mazimal straight-edge plane graph with
vertex set P satisfying the property that every inte-
rior face is a properly colored quadrilateral, i.e., no
edge connects vertices of the same color. It is easy to
check that in general not every set of points admits a
k-colored quadrangulation, and hence the use of ex-
tra points, for which we can choose the color among
the k available colors, is required in order to obtain
one. The extra points are known in the literature as
Steiner points. In this paper, we show that if P sat-
isfies some condition for the colors of the points in
Conv(P), then a k-colored quadrangulation of P can
always be constructed using less than (16’(735,)(7"_27[(72
Steiner points. Our upper bound improves the previ-
ously known upper bound for k = 3, and represents
the first bounds for k > 4.

1 Introduction

Let P be an n-point set, that is, a set of n points
in general position on the plane. We say that P is
k-colored if every point of P is colored with ezactly
one of k available colors. A quadrangulation of P is
a mazximal straight-edge plane graph with vertex set
P such that every interior face is a quadrilateral. For
a k-colored point set P, a quadrangulation of P is
said to be k-colored if no edge of the quadrangula-
tion connects vertices of the same color. From now
on, unless stated otherwise, we will always consider
P as being k-colored. Also, in our setting we are in-
terested in having Conv(P) as the outer cycle of the
k-colored quadrangulations of P, thus we will always
assume that any two consecutive points on Conv(P)
have distinct colors.

The study on k-colored quadrangulations of point
sets is rather new. It is easy to see that even when
Conv(P) is properly colored, k-colored quadrangula-
tions do not always exist, see [1]. Thus, if a k-colored
point set P is given, and one insists on constructing a
k-colored quadrangulation of P, then the use of extra
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points is in general needed. These extra points are
known in the literature as Steiner points, and in our
setting, the color of each Steiner point can be cho-
sen from the k available colors. In [2] it was shown
that for any bichromatic n-point set P, one can con-
struct a bichromatic quadrangulation of P with the
use of roughly % interior Steiner points. Those are
Steiner points introduced only inside Conv(P). There,
it was also shown that 3 interior Steiner points are
sometimes necessary. They also considered the case
when k = 3, and showed a surprising fact, there
are 3-colored point sets that do not admit 3-colored
quadrangulations regardless of the number of interior
Steiner points used, which is definitely an unexpected
result.

The strange phenomenon of not admitting 3-
colored quadrangulations, even with the use of Steiner
points, was recently explained in [3], where the au-
thors showed an elegant characterization of the 3-
colored point sets that admit 3-colored quadrangula-
tions using a finite number of interior Steiner points.
In the same paper, the authors showed that if possible,
a 3-colored quadrangulation can be constructed with
the use of at most %{?*48 interior Steiner points,
where |P| = n and |Conv(P)| = m. Note however that
this number depends on the size of Conv(P), and can
get larger than wished whenever m and n are compa-
rable in size. For example, if m = 374”, then the bound
becomes w which is larger than n already when
n>5.

In this paper, we show how one can use the al-
gorithm for the bichromatic case to obtain an algo-
rithm for a k-colored point set, for general k > 3.
Our algorithm uses less than (16’(7337":“67[(72 interior
Steiner points to construct a k-colored quadrangula-
tion of P. Our bound has the following advantages:
(1) Our algorithm fully replaces the algorithm shown
in [3], since it performs equally good when Conv(P) is
small, but it improves the worst-case behavior when
Conv(P) is large. For comparison, our bound for
k = 3, at worst, is essentially % < %, while the
one presented in [3] can grow larger than n if the right
conditions are met. (2) Our bound represents the first
bounds for the cases when k > 4.

We will divide the paper as follows: in section 2 we
give the necessary definitions and the precise state-
ment of our result, and in section 3 we prove our main
Theorem.
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2 Preliminaries

In order to make this paper more self-contained, we
will state the results from other papers that will be
used, and will be referred to. Let us first start with
some terminology. Let Q be an m-sided convex poly-
gon, with m > 4 even, and suppose that Q is properly
k-colored, where k > 2. The following are the defini-
tions taken from [3].

Let us assume that the k chromatic classes used to
color Q are 1,2, ..., k, and allow us denote the color of
a vertex v of @ by c(v). Let us define an orientation
O for the edges of Q as follows: if e = uv is an edge
of Q, then we orient e from v to v if ¢(u) < ¢(v), and
from v to u otherwise. Let e/ (Q) and e;(Q) be the
number of edges in clockwise and in counter-clockwise
direction respectively.

Definition 1 (Winding number) Let O be an ori-
entation of Q as explained before. The winding num-
ber of Q, denoted by w(Q), is defined as:

w(Q) = 15(Q) — eo(Q)
for k =3, and w(Q) = 0 for k # 3.

Observe that the winding number of a polygon Q
is non-trivial only when @ is 3-colored.

For a point set P, we will use w(P) as a shorthand
for w(Conv(P)), extending the definition of winding
number for polygons to sets of points. Finally, if P
is k-colored, with k > 2, we will say that P can be
k-quadrangulated if P admits a k-colored quadrangu-
lation.

The following result is the one described in the
introduction characterizing the 3-colored point sets
which can be 3-quadrangulated with Steiner points
added [3].

Theorem 1 (S.Kato, R. Mori, A. Nakamoto)

Let P be a 3-colored n-point set in general position
on the plane such that |Conv(P)| = m. Then there
exists a set S of Steiner points such that PUS can be
3-quadrangulated if and only if w(P) = 0. In such a

case, [S| < [ntiim=48

Now we can easily decide whether a 3-colored point
set admits a 3-colored quadrangulation. Nevertheless,
as we mentioned before, the number of Steiner points
required by Theorem 1 can get larger than wished
when m and n are comparable in size.

The main contribution of this paper is the following:

Theorem 2 Let k > 2 be an integer, and let P
be a k-colored n-point set in general position on the
plane. If w(P) = 0 or k > 4, then there exists a
set S of Steiner points such that P US can be k-

(16k—2)n+7k—2
quadrangulated, and |S| < T 30k—6

Note that our Theorem, besides of being able to
work with more than three chromatic classes, depends
only on n and k, which is a great improvement over
the previously known bound for k = 3.

3 Main Theorem

In order to prove our Theorem, we will need some in-
termediate results, the first one is easily proven using
the well known Euler’s formula:

Lemma 3 Let P be an n-point set in general position
on the plane where m of them lie on Conv(P). Then
any quadrangulation of P has (n — 1) — % quadrilat-
erals and 2(n —2) — 7 edges.

In [3] the following Lemma was shown:

Lemma 4 (S.Kato, R. Mori, A. Nakamoto)
Let Q@ be a 3-colored convex polygon colored by
three colors c1, ¢z, c3. Then the winding number of

Q is invariant for any bijection from {ci, ¢, c3} to
{1,2,3}.

That is, the winding number is well-defined, and
we may assume that if Q is a 3-colored convex poly-
gon, then it is colored by {1,2,3}. We now have the
following Lemma:

Lemma 5 Let Q@ be a properly k-colored convex
polygon of m > 4 sides such that w(Q) = 0. Then
Q@ can be partitioned into r = ’"sz properly colored
quadrilaterals Q1, ..., Q, such that w(Q;) = 0 for every
1<i<r.

Proof. The most interesting case is when k = 3,
which is the one we will explain here:

By Lemma 4, we may assume that the chromatic
classes are exactly {1,2,3}. Observe that there is a
vertex v € @ such that its two neighbors are of the
same color. For otherwise, i.e., if every vertex of @
has two neighbors with distinct colors, then we can
easily check that @ has a periodic cyclic sequence of
colors 1,2, 3, which is contrary to w(Q) = 0. See the
left in Figure 1.

Now assume that all edges of Q are oriented as ex-
plained before. Let v € Q be a vertex with two neigh-
bors u, w € Q of the same color, where u is the right
neighbor of v, and w the left neighbor. Let x € Q
be the right neighbor of u. Since Q is properly col-
ored, x has a color distinct from those of v and w,
and hence we can add an edge wx to create the prop-
erly colored quadrilateral @; = xuvw. Now, let Q' be
the cycle on the convex hull of Q \ {u, v}. We first
observe that w(Q;) = 0 since u and w have the same
color. Secondly observe that w(Q') = 0, which can
be explained as follows. Since v and w have the same
color, the orientations of the two edges vw and uv



EuroCG 2012, Assisi, Italy, March 19-21, 2012

are canceled in the computation of w(Q). Moreover,
the edges ux and wx are both oriented away from x.
Hence we get w(Q) = w(Q') = 0.

We can repeat these procedures inductively on Q’,
as shown to the right in Figure 1. That the total
number of created quadrilaterals is '"T_2 follows from
Lemma 3. (]

Figure 1:

The last result we need from [3] is the following:

Lemma 6 (S.Kato, R. Mori, A. Nakamoto)
Let P = ¢; U ¢ be a 2-colored n-point set in general
position on the plane such that |Conv(P)| = m, where
c1 and ¢ are the color classes of P with |c1| > |ca|.
Then there exists a set S of Steiner points such that
P US can be 2-quadrangulated, and:

S| < {%J + {L _2("’/2)J < % ~1

The previous Lemma is essentially one of the main
results of [2], and it is proven using exactly the same
techniques as for Theorem 1 of [2], however, they are
applied differently so the constant term on the bound
of |S| is improved in the worst case from (—1/3), in [2],
to —1, in [3]. This negligible improvement of con-
stants will play a useful role when proving Theorem 2.

The next Lemma is the last one before we proceed
with the proof of Theorem 2.

Lemma 7 Let k > 2 be an integer, and let P be a
k-colored (q + 4)-point set such that |Conv(P)| = 4.
Then there exist two sets of Steiner points Sr and Sa
such that:

e PUSr can be k-quadrangulated, and |Sr| < —5‘1;8.

e PUSA can be k-quadrangulated, and
(2k+1)g+16k

|SA| < 6k
Proof. Let us divide the proof into two parts, one
considering Sy and the other considering Sp. For sim-
plicity, let us denote Conv(P) by Q.

e Note that P can be regarded as a bichromatic
point set as follows: if @ is bichromatic itself,
say using colors ci, ¢, then we can recolor every

interior point of color different from ¢, with color
c1. We will rename the chromatic classes as ¢, =
c and cg = c.

If @ is 3-colored, say using colors ¢, ¢, ¢3, then
one color must appear twice on @, say without
loss of generality c;. Proceed as before, recolor
every point of color different than ¢, with a new
color ¢,. Rename the chromatic class ¢ as cg.

If Q is 4-colored, say using colors ¢y, ¢, ¢3, ¢4, as-
sume that ci, c3 and ¢, ¢4 appear in diagonally
opposite vertices of @ in clockwise order. Now
recolor P with two new colors ¢, and cg as fol-
lows: every point of color ¢, ¢4 receives color cg.
The rest of the points receive color c,.

As we end up having a bichromatic point set,
using colors ¢, ¢z, say without loss of generality
that |cg| < |cq|. Thus by Lemma 6 we obtain a
quadrangulation of P U Sr such that:

ot < | L 1 | =2 < 3Py s

3 2 - 12 12

e Let us now do the following: say without loss of
generality that ¢ is the smallest chromatic class
among the k chromatic classes. Let us assume
that Q is colored with colors other than c¢;, we
will see later on that this assumption only wors-
ens the upper bound. Now let us introduce two
Steiner points of color ¢; inside Q, very close to
two opposite vertices of @, and in such a way
that we create a new quadrilateral @’ that is still
properly colored and still contains the g interior
points. Let P’ be the point set formed by the
vertices of @ and the g points in its interior, see
Figure 2.

o2

1]

Figure 2: Points colored with color ¢; are represented
in black. Quadrilateral Q' still contains the g interior
points that quadrilateral @ originally contained.

Now recolor every point of P’ of color different
than ¢; with a new color c¢. This leaves only
two chromatic classes, ¢; and ¢, where ¢ is still
the smallest one. We can now proceed with the
quadrangulation of a bichromatic point set again,
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this time obtaining:

|c] (Ja|+2) -2
sl < |l jlaltd)=2)
Sal < {3 + ' +
< |—§|+%+2 |C|J;|C1| |C61|+2
g+2 ¢
9+, 9 1y
S T3 Tek T
_ q(2k+1)+ 16k
o 6k

where the first inequality is obtained using
Lemma 6 again. The last inequality is obtained
by |¢| = g+ 2 — |c1| and the assumption that ¢
is the smallest chromatic class, so |ci| < Z. If
|ci| = £, then we have |¢1| = -+ = || = £, and
hence we can take ¢ so that a does appear on
Q. In this case, only at most one Steiner point is
required in the beginning to obtain Q’. Hence we
would obtain [Sa| < W which is slightly
smaller, but it would still play a role reducing the
bound on Theorem 2.

We are finally ready to prove Theorem 2:

Proof. Let P be a k-colored n-point set on the plane,
where |Conv(P)| = m and ¢ = n — m. Then P has g
interior points. If w(P) = 0, by Lemma 5, we know
that we can partition Conv(P) into r = 732
quadrilaterals Q;, 1 <7 < r, each of which is properly
colored and has w(Q;) = 0. If w(P) # 0, then by
Theorem 1 the only case that makes senses is k > 4.
That is, P is colored with at least four colors but only
three of them appear in Conv(P), causing w(P) # 0.
In this case we cannot apply Lemma 5 directly, so
we will introduce one Steiner point s inside Conv(P),
and very close to one vertex v of Conv(P) such that s
replaces v in Conv(P). If the color of s is chosen such
that the new Conv(P) is 4-colored, and observe that
this is always the case, we can proceed with Lemma 5
as before.

Let g; be the number of interior points in quadrilat-
eral Q;. Using the first case of Lemma 7 on each Q;,
we get overall a set Sr = St US2 U --- USF of Steiner
points, where SE denotes the set of Steiner points used
to k-quadrangulate @; such that:

i+8 _2r  <~54
sr| Z|S'r| 25‘” = F+) 2

i=1
m—2 5q

3 T

Now, if we use the second case of Lemma 7 on each

Q; we get overall:

ZlSA|

_8r (2k +1)q;
3 Jr; 6k
4(m—2) n (2k+1)q
3 6k

We are assuming that in each Q; all the chromatic
classes appear. If that is not the case, say there is at
least one chromatic class not appearing in some Qj,
1 < j < r, then the size of the smallest chromatic class
in Q; is 0. In such a case, as the reader can verify, we

Z (2k 4+ 1)q; + 16k

[Sal 6k

would obtain an improvement on |S [, which would
clearly improve |Sa|.

Now we would like to see which one of Sp, Sa per-
forms better, and under what circumstances. For the
following, we note that g = n—m. If |Sr| < [Sal, then
we have:

m—2 5(n—m) 4(m-2) (2k+1)(n—m)
3 T 1 ST 3 6k

k(n+24)—2n
13k—2
implies g < 121/;(::22).
Let S be a set of Steiner points added

for k-quadrangulating P, and estimate |[S| by
min{|Sr|, [Sa|}. Then, if m > 2020 "o ohtain:

and hence m > . The bound on m in turn

13k—2
m—2 bq 4n+q+4
< l=—+—-+1l=—777—
IS| < ISrl+ s Tt B
(16k —2)n+ 7k — 2
39k -6

where the second equality follows from m = n—gq. On

the other hand, if m < %, then

(16k —2)n+ 7k —2
39k —6

The Theorem now follows entirely. (I

IS| < |Sal+1<
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