
EuroCG 2012, Assisi, Italy, March 19–21, 2012

Colored Quadrangulations with Steiner Points

Victor Alvarez∗ Atsuhiro Nakamoto†

Abstract

Let P be a k-colored set of n points in general position
on the plane, where k ≥ 2. A k-colored quadrangula-
tion of P is a maximal straight-edge plane graph with
vertex set P satisfying the property that every inte-
rior face is a properly colored quadrilateral, i.e., no
edge connects vertices of the same color. It is easy to
check that in general not every set of points admits a
k-colored quadrangulation, and hence the use of ex-
tra points, for which we can choose the color among
the k available colors, is required in order to obtain
one. The extra points are known in the literature as
Steiner points. In this paper, we show that if P sat-
isfies some condition for the colors of the points in
Conv(P), then a k-colored quadrangulation of P can

always be constructed using less than (16k−2)n+7k−2
39k−6

Steiner points. Our upper bound improves the previ-
ously known upper bound for k = 3, and represents
the first bounds for k ≥ 4.

1 Introduction

Let P be an n-point set, that is, a set of n points
in general position on the plane. We say that P is
k-colored if every point of P is colored with exactly

one of k available colors. A quadrangulation of P is
a maximal straight-edge plane graph with vertex set
P such that every interior face is a quadrilateral. For
a k-colored point set P , a quadrangulation of P is
said to be k-colored if no edge of the quadrangula-
tion connects vertices of the same color. From now
on, unless stated otherwise, we will always consider
P as being k-colored. Also, in our setting we are in-
terested in having Conv(P) as the outer cycle of the
k-colored quadrangulations of P , thus we will always
assume that any two consecutive points on Conv(P)
have distinct colors.

The study on k-colored quadrangulations of point
sets is rather new. It is easy to see that even when
Conv(P) is properly colored, k-colored quadrangula-
tions do not always exist, see [1]. Thus, if a k-colored
point set P is given, and one insists on constructing a
k-colored quadrangulation of P , then the use of extra
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†Department of Mathematics, Yokohama National Univer-

sity, nakamoto@ynu.ac.jp.

points is in general needed. These extra points are
known in the literature as Steiner points, and in our
setting, the color of each Steiner point can be cho-
sen from the k available colors. In [2] it was shown
that for any bichromatic n-point set P , one can con-
struct a bichromatic quadrangulation of P with the
use of roughly 5n

12 interior Steiner points. Those are
Steiner points introduced only inside Conv(P). There,
it was also shown that n

3 interior Steiner points are
sometimes necessary. They also considered the case
when k = 3, and showed a surprising fact, there
are 3-colored point sets that do not admit 3-colored
quadrangulations regardless of the number of interior
Steiner points used, which is definitely an unexpected
result.

The strange phenomenon of not admitting 3-
colored quadrangulations, even with the use of Steiner
points, was recently explained in [3], where the au-
thors showed an elegant characterization of the 3-
colored point sets that admit 3-colored quadrangula-
tions using a finite number of interior Steiner points.
In the same paper, the authors showed that if possible,
a 3-colored quadrangulation can be constructed with
the use of at most 7n+17m−48

18 interior Steiner points,
where |P | = n and |Conv(P)| = m. Note however that
this number depends on the size of Conv(P), and can
get larger than wished whenever m and n are compa-
rable in size. For example, if m = 3n

4 , then the bound
becomes 79n−192

72 which is larger than n already when
n ≥ 5.

In this paper, we show how one can use the al-
gorithm for the bichromatic case to obtain an algo-
rithm for a k-colored point set, for general k ≥ 3.

Our algorithm uses less than (16k−2)n+7k−2
39k−6 interior

Steiner points to construct a k-colored quadrangula-
tion of P . Our bound has the following advantages:
(1) Our algorithm fully replaces the algorithm shown
in [3], since it performs equally good when Conv(P) is
small, but it improves the worst-case behavior when
Conv(P) is large. For comparison, our bound for
k = 3, at worst, is essentially 46n

111 < 5n
12 , while the

one presented in [3] can grow larger than n if the right
conditions are met. (2) Our bound represents the first
bounds for the cases when k ≥ 4.

We will divide the paper as follows: in section 2 we
give the necessary definitions and the precise state-
ment of our result, and in section 3 we prove our main
Theorem.
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2 Preliminaries

In order to make this paper more self-contained, we
will state the results from other papers that will be
used, and will be referred to. Let us first start with
some terminology. Let Q be an m-sided convex poly-
gon, with m ≥ 4 even, and suppose that Q is properly
k-colored, where k ≥ 2. The following are the defini-
tions taken from [3].
Let us assume that the k chromatic classes used to

color Q are 1, 2, ... , k , and allow us denote the color of
a vertex v of Q by c(v). Let us define an orientation
O for the edges of Q as follows: if e = uv is an edge
of Q, then we orient e from u to v if c(u) < c(v), and
from v to u otherwise. Let e+O(Q) and e−O(Q) be the
number of edges in clockwise and in counter-clockwise
direction respectively.

Definition 1 (Winding number) Let O be an ori-

entation of Q as explained before. The winding num-

ber of Q, denoted by ω(Q), is defined as:

ω(Q) = |e+O(Q) − e−O(Q)|

for k = 3, and ω(Q) = 0 for k 6= 3.

Observe that the winding number of a polygon Q

is non-trivial only when Q is 3-colored.
For a point set P , we will use ω(P) as a shorthand

for ω(Conv(P)), extending the definition of winding
number for polygons to sets of points. Finally, if P
is k-colored, with k ≥ 2, we will say that P can be
k-quadrangulated if P admits a k-colored quadrangu-
lation.
The following result is the one described in the

introduction characterizing the 3-colored point sets
which can be 3-quadrangulated with Steiner points
added [3].

Theorem 1 (S.Kato, R. Mori, A. Nakamoto)
Let P be a 3-colored n-point set in general position

on the plane such that |Conv(P)| = m. Then there

exists a set S of Steiner points such that P ∪S can be

3-quadrangulated if and only if ω(P) = 0. In such a

case, |S| ≤ 7n+17m−48
18 .

Now we can easily decide whether a 3-colored point
set admits a 3-colored quadrangulation. Nevertheless,
as we mentioned before, the number of Steiner points
required by Theorem 1 can get larger than wished
when m and n are comparable in size.
The main contribution of this paper is the following:

Theorem 2 Let k ≥ 2 be an integer, and let P

be a k-colored n-point set in general position on the

plane. If ω(P) = 0 or k ≥ 4, then there exists a

set S of Steiner points such that P ∪ S can be k-

quadrangulated, and |S| < (16k−2)n+7k−2
39k−6 .

Note that our Theorem, besides of being able to
work with more than three chromatic classes, depends
only on n and k , which is a great improvement over
the previously known bound for k = 3.

3 Main Theorem

In order to prove our Theorem, we will need some in-
termediate results, the first one is easily proven using
the well known Euler’s formula:

Lemma 3 Let P be an n-point set in general position

on the plane where m of them lie on Conv(P). Then

any quadrangulation of P has (n − 1)− m
2 quadrilat-

erals and 2(n − 2)− m
2 edges.

In [3] the following Lemma was shown:

Lemma 4 (S.Kato, R. Mori, A. Nakamoto)
Let Q be a 3-colored convex polygon colored by

three colors c1, c2, c3. Then the winding number of

Q is invariant for any bijection from {c1, c2, c3} to

{1, 2, 3}.

That is, the winding number is well-defined, and
we may assume that if Q is a 3-colored convex poly-
gon, then it is colored by {1, 2, 3}. We now have the
following Lemma:

Lemma 5 Let Q be a properly k-colored convex

polygon of m ≥ 4 sides such that ω(Q) = 0. Then

Q can be partitioned into r = m−2
2 properly colored

quadrilateralsQ1, ... ,Qr such that ω(Qi) = 0 for every
1 ≤ i ≤ r .

Proof. The most interesting case is when k = 3,
which is the one we will explain here:
By Lemma 4, we may assume that the chromatic

classes are exactly {1, 2, 3}. Observe that there is a
vertex v ∈ Q such that its two neighbors are of the
same color. For otherwise, i.e., if every vertex of Q
has two neighbors with distinct colors, then we can
easily check that Q has a periodic cyclic sequence of
colors 1, 2, 3, which is contrary to ω(Q) = 0. See the
left in Figure 1.
Now assume that all edges of Q are oriented as ex-

plained before. Let v ∈ Q be a vertex with two neigh-
bors u,w ∈ Q of the same color, where u is the right
neighbor of v , and w the left neighbor. Let x ∈ Q

be the right neighbor of u. Since Q is properly col-
ored, x has a color distinct from those of u and w ,
and hence we can add an edge wx to create the prop-
erly colored quadrilateral Q1 = xuvw . Now, let Q ′ be
the cycle on the convex hull of Q \ {u, v}. We first
observe that ω(Q1) = 0 since u and w have the same
color. Secondly observe that ω(Q ′) = 0, which can
be explained as follows. Since u and w have the same
color, the orientations of the two edges vw and uv
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are canceled in the computation of ω(Q). Moreover,
the edges ux and wx are both oriented away from x .
Hence we get ω(Q) = ω(Q ′) = 0.
We can repeat these procedures inductively on Q ′,

as shown to the right in Figure 1. That the total
number of created quadrilaterals is m−2

2 follows from
Lemma 3. �
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Figure 1:

The last result we need from [3] is the following:

Lemma 6 (S.Kato, R. Mori, A. Nakamoto)
Let P = c1 ∪ c2 be a 2-colored n-point set in general

position on the plane such that |Conv(P)| = m, where

c1 and c2 are the color classes of P with |c1| ≥ |c2|.
Then there exists a set S of Steiner points such that

P ∪ S can be 2-quadrangulated, and:

|S| ≤

⌊

|c1|

3

⌋

+

⌊

|c2| − (m/2)

2

⌋

≤
5n

12
− 1

The previous Lemma is essentially one of the main
results of [2], and it is proven using exactly the same
techniques as for Theorem 1 of [2], however, they are
applied differently so the constant term on the bound
of |S| is improved in the worst case from (−1/3), in [2],
to −1, in [3]. This negligible improvement of con-
stants will play a useful role when proving Theorem 2.
The next Lemma is the last one before we proceed

with the proof of Theorem 2.

Lemma 7 Let k ≥ 2 be an integer, and let P be a

k-colored (q + 4)-point set such that |Conv(P)| = 4.
Then there exist two sets of Steiner points SΓ and S∆

such that:

• P∪SΓ can be k-quadrangulated, and |SΓ| ≤
5q+8
12 .

• P ∪ S∆ can be k-quadrangulated, and

|S∆| <
(2k+1)q+16k

6k .

Proof. Let us divide the proof into two parts, one
considering SΓ and the other considering S∆. For sim-
plicity, let us denote Conv(P) by Q.

• Note that P can be regarded as a bichromatic
point set as follows: if Q is bichromatic itself,
say using colors c1, c2, then we can recolor every

interior point of color different from c2 with color
c1. We will rename the chromatic classes as cα =
c1 and cβ = c2.

If Q is 3-colored, say using colors c1, c2, c3, then
one color must appear twice on Q, say without
loss of generality c2. Proceed as before, recolor
every point of color different than c2 with a new
color cα. Rename the chromatic class c2 as cβ .

If Q is 4-colored, say using colors c1, c2, c3, c4, as-
sume that c1, c3 and c2, c4 appear in diagonally
opposite vertices of Q in clockwise order. Now
recolor P with two new colors cα and cβ as fol-
lows: every point of color c2, c4 receives color cβ .
The rest of the points receive color cα.

As we end up having a bichromatic point set,
using colors cα, cβ, say without loss of generality
that |cβ | ≤ |cα|. Thus by Lemma 6 we obtain a
quadrangulation of P ∪ SΓ such that:

|SΓ| ≤

⌊

|cα|

3

⌋

+

⌊

|cβ | − 2

2

⌋

≤
5|P |

12
− 1 =

5q + 8

12

• Let us now do the following: say without loss of
generality that c1 is the smallest chromatic class
among the k chromatic classes. Let us assume
that Q is colored with colors other than c1, we
will see later on that this assumption only wors-
ens the upper bound. Now let us introduce two
Steiner points of color c1 inside Q, very close to
two opposite vertices of Q, and in such a way
that we create a new quadrilateral Q ′ that is still
properly colored and still contains the q interior
points. Let P ′ be the point set formed by the
vertices of Q ′ and the q points in its interior, see
Figure 2.

QP ′

Figure 2: Points colored with color c1 are represented
in black. Quadrilateral Q ′ still contains the q interior
points that quadrilateral Q originally contained.

Now recolor every point of P ′ of color different
than c1 with a new color c . This leaves only
two chromatic classes, c1 and c , where c1 is still
the smallest one. We can now proceed with the
quadrangulation of a bichromatic point set again,
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this time obtaining:

|S∆| ≤

⌊

|c |

3

⌋

+

⌊

(|c1|+ 2)− 2

2

⌋

+ 2

≤
|c |

3
+

|c1|

2
+ 2 =

|c |+ |c1|

3
+

|c1|

6
+ 2

<
q + 2

3
+

q

6k
+ 2

=
q(2k + 1) + 16k

6k

where the first inequality is obtained using
Lemma 6 again. The last inequality is obtained
by |c | = q + 2 − |c1| and the assumption that c1
is the smallest chromatic class, so |c1| <

q

k
. If

|c1| =
q
k
, then we have |c1| = · · · = |ck | =

q
k
, and

hence we can take c1 so that c1 does appear on
Q. In this case, only at most one Steiner point is
required in the beginning to obtain Q ′. Hence we

would obtain |S∆| ≤
q(2k+1)+7k

6k which is slightly
smaller, but it would still play a role reducing the
bound on Theorem 2.

�

We are finally ready to prove Theorem 2:

Proof. Let P be a k-colored n-point set on the plane,
where |Conv(P)| = m and q = n −m. Then P has q
interior points. If ω(P) = 0, by Lemma 5, we know
that we can partition Conv(P) into r = m−2

2 convex
quadrilaterals Qi , 1 ≤ i ≤ r , each of which is properly
colored and has ω(Qi ) = 0. If ω(P) 6= 0, then by
Theorem 1 the only case that makes senses is k ≥ 4.
That is, P is colored with at least four colors but only
three of them appear in Conv(P), causing ω(P) 6= 0.
In this case we cannot apply Lemma 5 directly, so
we will introduce one Steiner point s inside Conv(P),
and very close to one vertex v of Conv(P) such that s
replaces v in Conv(P). If the color of s is chosen such
that the new Conv(P) is 4-colored, and observe that
this is always the case, we can proceed with Lemma 5
as before.

Let qi be the number of interior points in quadrilat-
eral Qi . Using the first case of Lemma 7 on each Qi ,
we get overall a set SΓ = S

1
Γ ∪ S

2
Γ ∪ · · · ∪ S

r
Γ of Steiner

points, where SiΓ denotes the set of Steiner points used
to k-quadrangulate Qi such that:

|SΓ| =

r
∑

i=1

|SiΓ| ≤

r
∑

i=1

5qi + 8

12
=

2r

3
+

r
∑

i=1

5qi
12

=
m − 2

3
+

5q

12

Now, if we use the second case of Lemma 7 on each

Qi we get overall:

|S∆| =

r
∑

i=1

|Si∆| <

r
∑

i=1

(2k + 1)qi + 16k

6k

=
8r

3
+

r
∑

i=1

(2k + 1)qi
6k

=
4(m − 2)

3
+

(2k + 1)q

6k

We are assuming that in each Qi all the chromatic
classes appear. If that is not the case, say there is at
least one chromatic class not appearing in some Qj ,
1 ≤ j ≤ r , then the size of the smallest chromatic class
in Qj is 0. In such a case, as the reader can verify, we

would obtain an improvement on |Sj∆|, which would
clearly improve |S∆|.
Now we would like to see which one of SΓ, S∆ per-

forms better, and under what circumstances. For the
following, we note that q = n−m. If |SΓ| ≤ |S∆|, then
we have:

m − 2

3
+

5(n −m)

12
<

4(m − 2)

3
+

(2k + 1)(n −m)

6k

and hence m > k(n+24)−2n
13k−2 . The bound on m in turn

implies q < 12k(n−2)
13k−2 .

Let S be a set of Steiner points added
for k-quadrangulating P , and estimate |S| by

min{|SΓ|, |S∆|}. Then, if m > k(n+24)−2n
13k−2 , we obtain:

|S| ≤ |SΓ|+ 1 =
m− 2

3
+

5q

12
+ 1 =

4n+ q + 4

12

<
(16k − 2)n + 7k − 2

39k − 6

where the second equality follows from m = n−q. On

the other hand, if m ≤ k(n+24)−2n
13k−2 , then

|S| ≤ |S∆|+ 1 <
(16k − 2)n+ 7k − 2

39k − 6

The Theorem now follows entirely. �
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