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Abstract

We study the problem of approximating MST(P ), the minimum weight spanning tree of a
set P of n points in [0, 1]d, by a spanning tree of some subset Q ⊂ P . We show that if the weight

of MST(P ) is to be approximated, then in general Q must be large. If the shape of MST(P ) is
to be approximated, then this is always possible with a small Q.

More specifically, for any 0 < ε < 1 we prove:
(i) There are sets P ⊂ [0, 1]d of arbitrarily large size n with the property that any subset

Q′ ⊂ P that admits a spanning tree T ′ with
∣

∣|T ′| − |MST(P )|
∣

∣ < ε · |MST(P )| must have size

at least Ω(n1−1/d). (Here |T | denotes the weight, i.e. the sum of the edge lengths of tree T .)
(ii) For any P ⊂ [0, 1]d of size n there exists a subset Q ⊆ P of size O(1/εd) that admits

a spanning tree T that is ε-close to MST(P ) in terms of Hausdorff distance (which measures
shape dissimilarity).

(iii) This set Q and this spanning tree T can be computed in time O(τd,p(n)+1/εd log(1/εd))
for any fixed dimension d. Here τd,p(n) denotes the time necessary to compute the minimum
weight spanning tree of n points in Rd under any fixed metric Lp, 1 ≤ p ≤ ∞, where
τ2,p(n) = O(n log n), see [9], τ3,2(n) = O((n log n)4/3), and τd,2(n) = O(n2−2/(⌈d/2⌉+1)+φ), with
φ > 0 arbitrarily small, for d > 3, see [1]. Also τ3,1(n) and τ3,∞(n) is known to be O(n log n),
see [6].

1 Introduction

The approximation of geometric problems by means of reducing the size of the input has been the
subject of study of many researchers. The idea is the fast identification of the part of the input that
matters for the problem at hand and the use of this extracted data to speed up the computations.

In [2], Agarwal et al. developed a framework, called Coresets, to approximate extent measures of
a given set of points P in any fixed dimension d. Such extent measures include the diameter, the
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width, the radius of the minimum enclosing cylinder, etc. Their idea is basically the computation
of a subset P ′ of P whose size depends exclusively on ε and d and, whose convex hull approximates
the convex hull of P . Then, use this new convex hull for further computations and argue that this
produces good approximations for the desired extent measures.

In this paper we are interested in approximating the minimum weight spanning tree of a set P ⊂ R
d

of points, but not in the sense of, say, Clarkson [5], who wants to quickly find some spanning tree
of P whose weight is close to that of MST(P ). We are instead interested in finding a spanning tree
of a small subset of P that in some sense approximates MST(P ). We will show that the core set
approach outlined above cannot work in this context if the approximation measure is the weight
of the trees. However, if we want to approximate MST(P ) in a more topological (or shape) sense,
then this is indeed possible using a spanning tree of a subset of P whose size depends exclusively
on ε, the approximation parameter, and on d.

Throughout the paper let 0 < ε < 1 be a fixed constant. The dimension d is meant to be fixed.
Also, let Lp, 1 ≤ p ≤ ∞, be a chosen but fixed metric.

2 MST(P ) admits no constant size subset approximation with

respect to weight

The goal of this section is to prove the following result:

Theorem 1 For each n = kd with k ∈ N there exists a set P ⊂ [0, 1]d of n points such that any

subset Q′ of P that admits a spanning tree T ′ with |T ′| ≥ (1− ε)|MST(P )| must have size at least

Ω(k(d−1)).

Note that this theorem clearly implies Claim (i) of the abstract.

Proof. Let n = kd with k ∈ N and let G
d be the d-dimensional grid over [0, 1]d of cell size

δ = 1/(k − 1). Let P be the set consisting of the grid points of G
d. It is clear that |P | = n.

Any minimum weight spanning tree of such a set P only contains grid edges. Thus
|MST(P )| = (n − 1) · δ = (n − 1)/(k − 1) > n/k.

Now let T ′ be a spanning tree of some Q′ ⊂ P such that |T ′| ≥ (1− ε)|MST(P )|. Under the chosen
Lp metric, every edge inside the unit cube [0, 1]d has length at most p

√
d. Hence |T ′| < |Q′| · p

√
d.

Combining this last inequality with the ones above we have

|Q′| · p
√

d > |T ′| ≥ (1 − ε)|MST(P )| > (1 − ε)
n

k
.

Since n = kd and ε and d are constant, the result follows.

�
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3 The Hausdorff Metric

The Hausdorff metric allows to define distances between subsets of a metric space. In our case the
metric space is R

d with the chosen Lp metric.

Definition 1 (Hausdorff distance) The Hausdorff distance H(A,B) between two non-empty

subsets A,B of R
d is defined to be the radius of the largest open ball centered in one set and not

meeting the other set.

We say that A and B are ε-close iff H(A,B) ≤ ε.

It is well known that the Hausdorff distance constitutes a metric on the space of all non-empty
compact subsets of R

d. Moreover, in a way it expresses the shape similarity, or rather dissimilarity
between sets: H(A,B) = 0 means A and B must be the same, i.e. they are not at all dissimilar,
and A and B are ε-close means that they are only ε-dissimilar in the sense that for any point in
one set within distance ε there must be a point of the other set. Many computational geometry
papers have used the Hausdorff distance as a measure of similarity/dissimilarity between subsets
of R

d, see e.g. [3]. We will use the Hausdorff distance to measure similarity/dissimilarity between
spanning trees of finite sets embedded in R

d, where such a tree is considered a subset of R
d, namely

the union of the segments formed by its edges.

It will turn out that if instead of closeness in weight we consider closeness in Hausdorff distance the
minimum weight spanning tree of any finite P ⊂ R

d admits a good approximation by a spanning
tree of a constant sized subset of P .

4 Approximating MST(P ) by shape

At first a few graph theoretic preliminaries.

Let G be a complete undirected graph with vertex set P and with weighted edges. For the sake
of exposition we assume that all edge weights are distinct, and thus the shortest edge of any cut
of G and also the minimum weight spanning tree MST(P ) are unique. This assumption can be
justified using a standard perturbation argument. Let P = 〈P1, . . . , Pk〉 be a partition of P into
k ≥ 2 non-empty “clusters,” and let G be the graph obtained from G by contracting each cluster in
P into a single node. G has parallel edges and self-loops, still, its minimum weight spanning tree
MST(P ) is unique. Consider the forest on P formed by the k − 1 edges of G that induce the edges
of MST(P ). Let us call this forest the minimum weight cluster forest of P with respect to P , for
short MCF(P,P ).

What is the relationship between the edges in MCF(P,P ) and MST(P )?

Lemma 2 Every edge in MCF(P,P ) also is an edge of MST(P ).
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Proof. Let e be an edge of MCF(P,P ) and let e be the corresponding edge of MST(P ). The
removal of e from MST(P ) results in two subtrees producing a partition of the node set P into two
sets R and S. The edge e must be the shortest edge between nodes (i.e. clusters) in R and in S and
hence e must be the shortest edge between (original) vertices in R =

⋃

R and in S =
⋃

S. Since
R and S form a partition of P this means that e must be an edge of MST(P ). �

Let us call an edge of G long (with respect to P ) iff it is longer than any edge connecting two
vertices in the same cluster of P .

Lemma 3 Every long edge of MST(P ) is also an edge of MCF(P,P ).

Proof. Let e be a long edge in MST(P ). Similar to the previous proof the edge e induces a
partition of P into R and S, and e is the shortest edge connecting vertices in R with vertices in S.
No cluster of P can have a vertex both in R and in S, since such two vertices would be connected
by an edge shorter than the long edge e, a contradiction to e being the shortest edge between R
and S. Thus R and S induce a partition of the cluster set P into R and S, and e (induced by e) is
the shortest edge connecting a cluster in R with a cluster in S. Thus e is an edge of MST(P ) and
therefore e is an edge of MCF(P,P ). �

In the following P will a set of points in R
d. Recall that the distance between two points x, y ∈ R

d in
the Lp metric is given by Lp(x, y) = (

∑d
i=1 |xi − yi|p)1/p with L∞(x, y) = max(|xi − yi|), 1 ≤ i ≤ d.

Note that given a cube of dimension d and of side length δ, the largest distance between two points
inside the cube under the Lp metric is ≤ δ p

√
d.

We are now able to present the main result of this section which will prove Claim (ii) of the abstract.

Theorem 4 Let P be a set of points in [0, 1]d and let 0 < ε < 1 be a given parameter. It is

possible to find a spanning tree T of some subset Q of P such that MST(P ) and T are ε-close and

|Q| = O(1/εd).

Proof. We will start by imposing a d-dimensional grid G
d of cell size δ = 2ε

3 p
√

d
over P , where p is

the chosen metric. The grid G
d induces a partition P of P into k = O(1/εd) clusters, with each

cluster begin composed of the set of points contained in a cell of G
d. See Figure 1. Note that by

the observation right above, two points in the same cluster are at most 2ε/3 apart.

The claimed set Q will be the points in P incident to the edges of the minimum weight cluster
forest MCF(P,P ). Since there are k − 1 edges in MCF(P,P ) it follows that |Q| = O(1/εd).

The claimed spanning tree T of Q will contain all edges in MCF(P,P ) and in addition for each
cluster C in P an arbitrary spanning tree of the points of Q in C. See Figure 1.

We claim that T and MST(P ) are ε-close.

We need to prove that for every point on T there is a point on MST(P ) within distance at most ε,
and vice versa.
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Let e be an edge of T . If e is an edge of MCF(P,P ), then by Lemma 2 it is also an edge of MST(P )
and thus every point x on e is within distance 0 < ε of some point of MST(P ). If e is an edge
connecting two points of the same cluster, then its length is at most 2ε/3. Thus any point x on e
is at most at distance ε/3 < ε from one of e’s endpoints, which are both in MST(P ).

Now let e be an edge of MST(P ). If it has length bigger than 2ε/3, then it is long in the sense of
Lemma 3, and therefore it is contained in MCF(P,P ) and hence also in T . Thus every point x on
e is within distance 0 < ε of some point of T . If e has length less than 2ε/3, then every point x is
within distance ε/3 of an endpoint v of e. Let q some point of Q in the cluster containing v. The
distance between v and q is at most 2ε/3, and thus by the triangle inequality the distance between
x and q (which lies on T ) is at most ε. �

δ
δ

Figure 1: The points chosen to form Q are highlighted in light gray. The dashed edges connect
points in different clusters of P induced by G

2

This result says that it is possible to find a constant-size subset Q of P along with a spanning tree
T of Q such that shape-wise T and MST(P ) look essentially the same. This gives a method to sort
of “compress” MST(P ) to a tree that is close in shape but has constant size. Note, however, that
one cannot conclude anything from T about the total weight |MST(P )|.

5 Computing T

The only computationally non-trivial step in computing Q and T is the determination of the edges
of the cluster forest MCF(P,P ). The straigtforward way of computing these edges, forming the
cluster graph G and computing its minimum weight spanning tree MST(P ), leads to an Θ(n2) time
algorithm in the worst case, since G can have Θ(n2) non-loop edges. (We assume here ε and d to
be fixed.)

Lemma 2 implies that for computing MST(P ) it suffices to consider only those edges that are
induced by edges of MST(P ). This suggests the following algorithm: Compute B = MST(P ), for
each grid imposed cluster contract the edges of B within the cluster to produce a contracted graph
B. Compute the minimum weight spanning tree of B, which by Lemma 2 is the same as MST(P ).

If τd,p(n) denotes the time necessary to compute the minimum weight spanning tree of n points in
R

d and under the chosen Lp metric, then the time necessary for the outlined method is τd,p(n) for
computing MST(P ), plus O(n) for computing B and O(n + N log N) for computing the minimum
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weight spanning tree of B, where N = O(1/εd) is the number of occupied grid cells, which is
constant if ε and d are considered to be constant. The total time for the whole method is then
dominated by τd,p(n). The following values for τd,p(n) are known:

• τ2,p(n) = O(n log n), see [9].

• τ3,2(n) = O((n log n)4/3), see [1].

• τd,2(n) = O(n2−2/(⌈d/2⌉+1)+φ), with φ > 0 arbitrarily small, for d > 3, see [1].

• τ3,1(n) and τ3,∞(n) are known to be O(n log n), see [6].

e

e
′ δ

Figure 2: P is the set of black points. Q is the set of gray points. Any point on the edge e of
MST(P ) (solid edges) is farther than ε to any point on the edge e′ of T (dashed edges). Therefore
both trees are not ε-close.

Other methods suggest themselves, but they are either incorrect or do not seem to lead to better
time bounds. For instance, we could choose a small sample set of points from each occupied cluster
and compute the minimum weight spanning tree of the union of these sample sets. However, the
tree produced this way may be very different in shape from MST(P ) and will not lead to a tree that
is ε-close to MST(P ), see Figure 2. Or, we could run a minimum weight spanning tree algorithm
on the clusters (without forming G or some subgraph explicitly) by repeatedly solving so-called
bi-chromatic closest pair problems. However, this is unlikely to produce a better running time,
since the complexity of solving a bi-chromatic closest pair problem on n points in R

d under any Lp

metric is known to be Θ(τd,p(n)), see [6].

Finding a faster algorithm for computing a constant sized tree that is ε-close to MST(P ) looks like
a challenging problem.

6 Conclusion and Open Problems

We have shown that in general it is not possible to approximate well the weight of the minimum
weight spanning tree of a set of points P in R

d with a subset of size independent of the size of P .
However, changing the notion of approximation, we have shown, that it is possible to compute a
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spanning tree T of some small subset Q ⊆ P such that the Hausdorff distance between T and the
minimum weight spanning tree of P is small, which means that the two trees are very similar in
shape. This provides a potential way of compressing MST(P ) in a meaningful and interesting way.

Finally we briefly want to discuss the question whether the results of this paper are restricted to
minimum weight spanning trees, or whether they allow generalizations to other structures on point
sets, for instance on the Euclidean Travelling Salesperson Tour.

So the question at hand is the following, let us call it the TSP approximation problem: Given a set
P of n points in [0, 1]d, some ε > 0, and some function f : R

2 → R, compute a set Q ⊂ P with |Q| ≤
f(ε, d) along with a cycle C through Q that is “ε-close” to TSP(P ), the shortest Hamiltonian circuit
through P . For the case that “ε-close” is to be interpreted as closeness in Euclidean length it is easy
to see that in general this TSP approximation problem does in general not admit a solution: the
proof of Theorem 1 carries over in an almost verbatim fashion. Similarly, for the case the “ε-close”
is to be interpreted in the Hausdorff sense there is a positive answer to this TSP approximation
problem, as long as f(ε, d) ∈ Ω(1/εd): The methods used to prove Theorem 4, appropriately
adjusted, suffice. However, this positive answer is algorithmically quite unsatisfying, since in the
methods of the proof of Theorem 4 computing the approximation requires the knowledge of TSP(P ),
and of course computing TSP(P ) is NP-hard. (Replacing TSP(P ) by a length approximation, which
by the results of Arora [4] and Mitchell [7] can be computed in polynomial time, seems like a cheat.)
So the question remains whether the TSP approximation problem (in the Hausdorff sense) admits
polynomial time solution (in n, ε, d). We have not succeeded in finding such a solution and we
also have been unable to prove that the problem is hard. We suspect that it is actually hard and
conjecture the decision version of the TSP approximation problem (in the Hausdorff sense) to be
NP-hard.
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