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Abstract

We give an algorithm that determines the number tr(S) of straight line triangulations of a
set S of n points in the plane in worst case time O(n22n). This is the the first algorithm that is
provably faster than enumeration, since tr(S) is known to be Ω(2.43n) for any set S of n points.
Our algorithm requires exponential space.

The algorithm generalizes to counting all triangulations of S that are constrained to contain
a given set of edges. It can also be used to compute an optimal triangulation of S (unconstrained
or constrained) for a reasonably wide class of optimality criteria (that includes e.g. minimum
weight triangulations). Finally, the approach can also be used for the random generation of
triangulations of S according to the perfect uniform distribution.

The algorithm has been implement and is substantially faster than existing methods on a
variety of inputs.

1 Introduction

For the purposes of this paper a plane graph on a set S of points in the plane is a set E of straight
line segments joining points in S that do not intersect except in common endpoints. We will feel
free to switch without much ado between the geometric view of such a graph and the discrete view
afforded by the naturally associated abstract graph. Let PG(S) denote the set of all plane graphs
on S. The set PG(S) has received considerable research attention along with some of its subsets,
like the set of all plane perfect matchings (all 1-regular graphs in PG(S)), the set of all plane cycle
covers (all 2-regular graphs in PG(S)), the set of all plane spanning cycles (all connected 2-regular
graphs), the set of all plane spanning trees (all connected graphs in PG(S) with a minimal number
of edges), and finally the set of all plane triangulations (all graphs in PG(S) with a maximal number
of edges). We will refer to those different subsets of PG(S) as classes.

For all these classes exponential lower and upper bounds have been proven for their sizes [4, 24, 13,
3, 18, 27, 26, 14, 25, 23, 2], i.e. statements of the form “for any planar set S of n points the number
of plane perfect matchings is Ω(cn1 ) and O(cn2 ).” However, typically c1 and c2 are (too) far apart.
In some cases the general lower bounds are trivial: e.g. points in convex position admit only one
plane spanning cycle.

There has been some interesting work [10, 9, 14, 20, 26] on relating the sizes of those classes: E.g. it
is easy to see that the number of plane graphs of S is not more than 23n times the number of plane
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triangulations of S. The fact proven by Razen and Welzl [20] that the number plane graphs of S is
at least 23n/2 times the number of plane triangulations of S, however, is far from trivial. The same
can be said for the result of Sharir, Sheffer, and Welzl that the number of plane perfect matchings
of S is at most O(1.1067n) times the number of plane triangulations of S. Still, our understanding
of these relationships is quite rudimentary.

A different line of research has addressed the problem of computing the sizes of those various classes
of plane graphs for a given point set S. Efficient enumeration algorithms are known for all these
classes, where “efficient” means polynomial overhead per produced graph. But the interesting
problem is to determine the size N of such a class in time that is substantially less than N . So far
this has been only accomplished for the class of all plane graphs in a recent paper of Razen and
Welzl [20], who manage to determine |PG(S)| in time roughly O

(

|PG(S)| /23n/2
)

. However, their
method does involve enumerating all plane triangulations of S.

This paper deals with the class of plane triangulations of S. We will refer to it by T (S) and we
will use tr(S) = |T (S)|. There has been considerable work determining lower and upper bounds
for tr(S). Currently the best bounds known are [23, 26]

Ω(2.43n) ≤ tr(S) ≤ O(30n) ,

where n = |S|.

There has also been a fair number of papers on computing tr(S) given S: The reverse search method
of Avis and Fukuda [7] can be applied to enumerate (see [8] for a particularly fast realization),
Katoh and Tanigawa [15] consider more general enumeration problems, Aichholzer [1] proposed
a divide-and-conquer method base on so-called triangulation paths, Ray and Seidel [19] exploited
dynamic programming, and Alvarez, Bringmann, and Ray [6] applied a sweep approach based on
triangulation paths and also proposed a method that exploited the onion layer structure of a point
set, see [5]. This last approach achieved the so far best worst case running time with a bound of
O(3.1414n). It should be noted that it is unlikely that a polynomial time counting method will be
found, since a closely related problem was shown to be NP-hard [16, 22] and even W [2]-hard [5].

In this paper we give an algorithm that determines tr(S) in worst case time O(n22n) and space
O(n2n). This running time can well be called substiantially less than tr(S), since, as already
mentioned, tr(S) ≥ Ω(2.43n). The algorithm is suprisingly simple given how long this problem
has been studied already. We have implemented the new method and report some experimental
results. Our approach can also be used to count all triangulations of S that contain a prescribed set
of edges, to find an “optimum” triangulation with respect to certain “decomposable” optimization
criteria, or to generate triangulations of S uniformly at random.

2 The Algorithm

Let S = {p1, . . . , pn} be a set of n points in the plane. We assume that S is not contained in a
straight line, otherwise there would be no triangulations to count. For the sake of ease of exposition
we assume that no three points in S are colinear and no two points lie on a common vertical line.
Thus we can assume without loss of generality that the points in S are indexed by increasing x-
coordinate. A monotone chain for S is a polygonal chain that connects the leftmost point p1 and
the rightmost point pn, contains only points of S as vertices, and intersects every vertical line at
most once.
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Let T be some plane triangulation of S. From now on we will omit the adjective “plane.” A
monotone chain in triangulation T is a monotone chain for S all whose segments are edges of the
triangulation T .

For a monotone chain C in T let ∆T (C) be the set of triangles of T that lie below C. We call a
triangle t of T an advance for C if it lies above C and ∆T (C) ∪ {t} = ∆T (C

′) for some monotone
chain C ′ in T . We say that in this case C advances to C ′. Note that there are two different
types of advances. Let the advance triangle t be spanned by points pi, pj, pk, with i < j < k,
which also means pi is to the left of pj which in turn is to the left of pk. Either pj lies above the
segment [pi, pk]. In this case t intersects C in that segment and C ′ is obtained from C by replacing
segment [pi, pk] by the two segments [pi, pj ], [pj , pk]. Thus such an advance increases the length of
the chain and includes a new vertex. Otherwise pj lies below [pi, pk]. In this case t intersects C in
[pi, pj ], [pj , pk] and C ′ is obtained from C by replacing those two segments by [pi, pk]. This type of
advance decreases the length of the chain and expels vertex pj from the chain.

Figure 1: A monotone chain in a triangulation and two possible advances.

The following is folklore:

Lemma 1. Let T be some triangulation of S. For any monotone chain C in T there is an advance
triangle, unless C consists only of edges of the upper boundary of the convex hull of S.

Proof. Let C be a monotone chain in T , let C be a maximal subchain of C containing no “upper
hull edges,” and let ph and pℓ the left and right endpoints of C. Note that for each edge e = [pi, pj ]
of C there is a unique triangle te of T that contains e and lies above C. Let p be the corner of te
that is not on e. Assign the orientation left, right, or none to e depending on whether p is to
the left of pi, to the right of pj or “between” pi and pj. If some edge e of C has orientation none

then te constitutes an advance triangle. So assume orientation none does not occur. Note that
if e = [pi, pj ] is oriented right and the next segment e′ = [pj, pk] is oriented left, then te = te′

and this triangle constitutes an advance triangle. But note that such a configuration must occur
since the leftmost edge of C must be oriented right and the rightmost edge of C must be oriented
left. �

Every monotone chain C in T (except for the topmost one) must have some advance. As a matter
of fact it can have several of them. But it has a unique leftmost one, t, i.e. no other advance triangle
intersects C to the left of t. This means that for every triangulation T there is a unique sequence
C0, . . . , CM of monotone chains in T , where C0 is formed by the lower boundary of the convex hull,
CM by the upper boundary of the convex hull, and each Cℓ is obtained from Cℓ−1 by a leftmost
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advance. Here M is the number of triangles in T , which must be 2n− h− 2, where n = |S| and h
is the number of points in S that are on the boundary of the convex hull of S. We call this unique
sequence of chains a leftmost advancing sweep of T .

Thus in order to count the number of triangulations of S it suffices to count the number of leftmost
advancing sweeps. We will do this by forming a directed acyclic graph GS in which source-sink
paths correspond 1-1 with leftmost advancing sweeps. Counting all such source-sink paths can
easily be done in time linear in the size of GS by traversing its nodes in topological order.

The nodes of GS will be marked monotone chains for S. Such a marked chain is simply a monotone
chain for S with one of its edges marked. It can be denoted by the pair (C, ℓ), where C is a monotone
chain and ℓ is an integer indicating that the ℓ-th edge eℓ of C is marked (counting from left to
right).

Figure 2: A marked monotone chain for S and two possible successors.

We define a successor relation on such marked monotone chains. Let (C, ℓ) be one such marked
monotone chain. Let em = [pi, pj ] with m ≥ ℓ be the m-th edge of C. First assume there is some
pµ in S that lies “between” pi and pj (i.e. i < µ < j), that lies above em, and for which the triangle
spanned by em and pµ contains no point of S in its interior. Consider the monotone chain C ′

obtained from C by replacing edge em by the sequence of two edges [pi, pµ], [pµ, pj ]. We define each
marked monotone chain (C ′,m) obtained this way to be a successor of (C, ℓ).

Next assume that chain C contains two consecutive edges em−1, em with m ≥ ℓ so that the triangle
spanned by those two edges lies above C and contains no points of S in its interior. Let pi, pj, pk
be the three endpoints of the two segments in left to right order, and consider the monotone chain
C ′ obtained from C by replacing em−1, em by edge [pi, pk]. We define each marked monotone chain
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(C ′,m− 1) obtained this way to be a successor of (C, ℓ).

Our DAG GS contains an edge from (C, ℓ) to (C ′,m) iff (C ′,m) is a successor of (C, ℓ).

Let B be the bottom-most monotone chain for S, i.e. B contains the sequence of edges on the lower
boundary of the convex hull of S. Analogously let U be the top-most monotone chain for S, i.e. the
sequence of edges of the upper boundary of the convex hull of S. Let C be some monotone chain
for S. The following can easily be proven by induction:

Claim 2. There is a 1-1 correspondence between the directed paths in GS from (B, 1) to (C, k)
and the triangulations of the area A sandwiched between chains B and C whose leftmost advancing
sweep has as last advance a triangle t whose leftmost upper boundary edge is the k-th edge of C.

The triangulation of A must of course include also all points of S as vertices that lie between B and
C. Note that for a given chain C all such triangulations have the same number of triangles. We
refer to this number as the level of C. The induction for proving this claim is on this level number.

Since for any triangulation of S the leftmost advancing sweep has as last advance a triangle whose
upper boundary is part of the top-most chain U we get that every path in GS from (B, 1) to (U, k)
for some k corresponds to a leftmost advancing sweep of some triangulations of S. Adding a “top”
vertex ⊤ to GS that has an edge to it from every marked chain (U, k) we get our main theorem:

Theorem 3. The number of triangulations of S is the number of paths in GS from source (B, 1)
to sink ⊤.

The number of those source sink paths can be determined in time O(n22n) and using space O(n2n)
in the worst case.

Proof. After the preceding discussion we only need to prove the resource bounds.

Determining the number of source-sink paths in a DAG can be achieved by the following algorithm:
store a counter with each node that is initialized to 0; initialize the counter of the source to 1; iterate
through the vertices in topological order and for each vertex add its countervalue to the counter of
each of its successors.

The time necessary for this algorithm is proportional to the number of edges of the DAG GS . Since
each monotone chain for S is uniquely identified by a subset of S there are at most 2n chains
(actually 2n−2 since p1 and pn are always included) and for each chain there are at most n − 1
possible markings. Thus the number of nodes in our DAG GS is O(n2n). Each node can have at
most n successors, since each successor either includes a new vertex into the chain or excludes one.
Thus the number of edges in GS is O(n22n), which proves the running time bound.

The algorithm does not need to store edges, since given a marked chain, its successors can be
computed in O(n) time after polynomial preprocessing. Thus only space for the O(n2n) nodes of
GS is necessary and the claimed space bound follows. �

A short remark on the model of computation: since we use exponential space we have to work with
a RAM with linear word size. Therefore it is fair to assume that our counters which can take on
exponentially large values can be stored in a single word and can be added in constant time.

5



3 Generalizations

Our approach admits some easy generalizations. For example, it can be used to determine the
number of all triangulations of a set S that are constrained to contain a certain set R of edges.
It suffices to observe that such constrained triangulations also have a unique leftmost advancing
sweep and to adjust the successor relation for the definition of the DAG GS so that segments that
cross edges in R are never considered.

The approach can also be used to compute an “optimal” triangulation of S, as long as the function to
be optimzed is sufficiently well-behaved. It suffices that the function is defined for any triangulation
of any polygonal domain D, and for any triangle t the optimum value over all triangulations of
D ∪ t that contain t can be obtained from the optimum value for D and from t. In our algorithm
D will be the domain between the bottom chain B and the chain C under consideration and t is
the advance triangle sandwiched between C and the successor chain under consideration.

Examples of such well behaved functions are the sum or the maximum of the weights of the
triangles (or edges) in a triangulation where the weights are arbitrary numbers assigned to each
triangle spanned by three points in S. For instance, you could assign to each triangle t the weight
|area(t) − µ)|, where µ is the area of the convex hull of S divided by M , and M is the number of
triangles in any triangulation of S, i.e. M = 2n − h− 2, with n = |S| and h the number of points
in S that are on the boundary of the convex hull of S. The triangulation that minimizes the sum
or the maximum of these weights then consists of triangles whose areas deviate from the mean
minimally.

Of course such optimization problems can also be solved for constrained triangulations.

Finally, our approach yields a method for generating a random triangulation of S truly uniformly,
unbiased. More precisely, we can preprocess a given point set in time O(n22n) to produce a data
structure of size O(n22n) from which we can then generate triangulations of S truly uniformly at
random at cost O(n2) per triangulation.

In spite of the large preprocessing cost this can be quite useful. For instance, we have used this
approach to estimate the proportion of the triangulations of S that are regular [12, page 55]
by taking sufficiently many random samples and testing each sample triangulation for regularity
(which just amounts to solving a linear program). This gave us strong empirical evidence that the
proportion of regular triangulations of n points, of which k are extreme, goes to 0 with increasing
n, when k stays fixed. Details will be described elsewhere.

Here is the random generation method: First we compute the graph GS along with the counter
values for each node. We remove all nodes that are not reachable from the source vertex (B, 1) or
from which you cannot reach sink vertex ⊤.

We choose a random triangulation by constructing a random path: choose a random number r
between 1 and tr(S) and construct the r-th source-sink path in reverse order as follows: Starting
with v = ⊤ you proceed until v = (B, 1) doing the following: consider the predecessors of v in a
canonical order and subtract their counts from r as long as r would stay positive; choose that last
predecessor as new v. It is an easy exercise to see that each source-sink path is chosen this way
with equal probability and hence each triangulation is chosen with equal probability.
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4 Counting other crossing-free structures

The main new ingredient in our method is the reduction to counting source-sink paths in a directed
acyclic graph. Wettstein and Welzl [28] have managed to discover similar such reductions for
counting or enumerating various other crossing free structures on a planar point set, such as perfect
matchings, spanning cycles, spanning trees, or all plane graphs.

5 Dead Ends

We were hoping that our approach could be adapted to determine the number of (pointed) pseu-
dotriangulations of a point set S. So far this has been in vain. The main reason is that Lemma 1
may fail in this context.

Even more importantly, we were hoping that our approach could lead to an improved upper bound
for the number of triangulations that every point set can have. The hope was that a combinatorial
description of a leftmost advancing sweep would suffice to specify the actual geometric sweep. This
combinatorial description would be something of the form: advance chain C by replacing edges
ek, ek+1 by a single edge, then advance replacing edge em = [pi, pj] by the two edges [pi, pλ], [pλ, pj ]
(without specifying pλ), and so on. If this were possible, then a 27n upper bound for the number
of triangulations of S would follow, since it is relatively easy to show via a labelling argument that
there are at most 33n “combinatorial leftmost advancing sweeps.”

However, there is an old example of Günter Rote [21] that shows that there are point sets that
admit two different triangulations that are isomorphic even if the edges are all oriented left to
right. Figure 3 shows such a point set. But it is easy to see that two such isomorphic triangulations
must have leftmost advancing sweeps that have identical combinatorial descriptions, and thus the
combinatorial description by itself cannot specify a unique triangulation.
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Figure 3: A point set with two different triangulations that are isomorphic even if all edges are
oriented left to right.

6 Implementation Issues

Our approach is space-intensive. Thus saving space is of utmost importance.

First of all we never store the entire DAG GS . We proceed level by level and only store the nodes
of at most two consecutive levels. Recall that the level of a chain is the number of triangles in any
triangulation below that chain. Say we have proceeded to level s and we have produced the set Ls
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of all marked chains of that level that can be reached from source chain (B, 1). We initialize an
empty dictionary for Ls+1. We iterate over Ls and for each marked chain (C, k) we generate its
successors and for each successor we insert it into Ls+1 if it is not there already and we add (C, k)’s
counter value to the counter value of the successor. After this we can delete (C, k).

Note that a marked chain may not have any successors and may form a “dead end” in GS . It is
of course desirable to avoid such dead ends as much as possible. So we need conditions that tell
us that a given marked chain (C, k) cannot possibly reach ⊤ in GS so that we can remove (C, k)
from further consideration right away. A sufficient condition for dismissal of (C, k) is the following:
Among the leftmost k − 1 edges of C there is one that is only visible by points of S that are on
or above C and that are left of the k-th edge ek. The only obstacle for visibility is the chain C.
Clearly in such a situation any leftmost advancing sweep would have had to advance on a triangle
left of ek before, and hence (C, k) cannot occur in such a sweep.

The entries of the dictionaries Ls are of the form (key, value), where key is a bit vector repre-
senting (C, k) and value is a possibly large integer. (C, k) can be represented by a bit vector of
length n+log2 n with n bits specifiying which points of S are vertices of C and the other bits giving
the binary representation of k. For all we know value could be an integer as large as 30n, at least
this is the best upper bound currently known. Instead of reserving so much space for counters we
can resort to Chinese Remaindering and count modulo some prime P , for which we only need
a fixed number of bits. By running the algorithm several times for different primes and applying
the Chinese Remainder Theorem to the resulting count remainders we can recover the true final
count.

The dictionaries Ls must allow fast search, insertion, and enumeration. Hashing is a natural
choice for the realization of such dictionaries. We have found simple hashing with chaining to be
too wasteful in space because of the need for pointers. We finally used cuckoo hashing which is
reasonably fast and gets by without pointers.

It is possible to avoid dictionaries alltogether. When processing Lk simply forego searching and
generate copies of (key,value) pairs. In the end we sort on key and aggregate the values of
duplicates to one value. This has proven to be too wasteful in terms of space when run on a single
machine. However, this way of proceeding is a typical “map-reduce” step [11]. Thus if we are
interested in solving large instances using clusters of computers this may well be the simplest way
to proceed. Currently the map-reduce paradigm is mostly used for a single step. Our algorithm
would need iterated map-reduce steps.

7 Experiments

We have implemented our sweep approach and have compared it to two other algorithms, namely
the dynamic programming algorithm of [19] and the sn-paths algorithm of [5]. The latter algorithm
is tuned for point sets that have few onion layers, i.e. they can be decomposed into the vertex sets
of few nested convex polygons. All algorithms were run on a machine with 128 Gigabytes of main
memory.

Tables 1 through 3 give some comparisons of running times and space usage. The first table
considers n points chosen uniformly at random in a square, the second table considers point sets
that essentially are nested triangles, the last table considers points chosen randomly from k = 3
concentric circles. In these tables h denotes the number of extreme points of the respective set and
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k denotes the number of its onion layers. The term “Base” denotes the n-th root of the number
to the left; “# Sub-problems” in “sweep-algo” denotes the maximum number of marked chains
encountered at any level.

The sweep algorithm is particularly superior for random input instances, where it could solve
problems with up to 50 points, which was completely out of reach before. As expected, the sn-path
algorithm performs extremely well for point sets with few onion layers.

The sweep algorithm performs very poorly if all points are in convex position. Figure 4 gives a
brief account of this phenomenon.

We also made preliminary experiments with the sweep algorithm for the constrained version of
the problem. Figure 5 illustrates those results with two examples. One has a perfect matching
as constraint set, the other one the edeges of the minimum spanning tree. Note that the latter
example could of course also be solved using dynamic programming, which would take only O(n3)
time.

Figure 4: To the left 30 points in convex position which forces the worst-case behavior of the
algorithm. It took our program almost 17 minutes and 7050 MB of RAM memory to complete
this instance. To the right the same configuration but with one point moved to the interior of the
convex hull. This reduces the complexity of the algorithm significantly: almost 9 minutes and 3633
MB of RAM memory.

Figure 5: Both shown sets of points are the same. They correspond to the first set of 50 points
of Table 1, having 113071115010855074515830603921337 ≈ 4.3750 triangulations. The number
of triangulations containing the shown matching is 1214781483428889112873468 ≈ 3.0350, which
constitutes approximately a 1.074 ·10−8 fraction of the total number of triangulations. The number
of triangulations containing the minimum weight spanning tree is 3963846555354291101173440 ≈
3.1050, which is about a 3.505 · 10−8 fraction of the total number of triangulations.
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Time in hhh:mm:ss.ms RAM in MB # Sub-problems

n k h #Triangulations Base dyn-prog sn-paths sweep-algo dyn-prog sn-paths sweep-algo dyn-prog sn-paths sweep-algo

30 5 9 29762284427845618 ≈ 3.54 7.60 3:56.61 5.02 130 141 8 854579 947262 88490

6 7 54648952555202115 ≈ 3.61 30.69 16:17.12 11.28 470 535 16 3150228 3590878 233038

33 5 11 8830953374442248378 ≈ 3.75 34.80 14:47.26 28.84 643 394 79 4245399 2554063 549137

6 7 23407918365649149382 ≈ 3.86 15.10 1:10:34 53.16 288 1292 65 1907449 8731943 723316

37 5 11 8317197892568798832050 ≈ 3.91 3:35.27 1:15:00 8:44.55 2796 1524 615 18477670 9735430 3944618

5 13 15347609782987966767248 ≈ 3.97 15:23.53 2:16:32 9:21.30 10707 1957 437 70483691 12535632 7147625

40 6 12 1146138971033715203926926 ≈ 3.99 25:42.43 13:29:43 1:00:49.56 18525 8889 2139 121049523 56587195 35007849

7 10 5050493282169462429012536 ≈ 4.14 1:35:45 46:49:41 23:38.37 54128 25533 776 354717051 155716531 12694463

43 6 10 981403313298259834292202925 ≈ 4.24 3:20:54 107:48:48 1:39:51.84 116506 37407 4578 752596823 239084256 49968377

7 8 707769153122173171028848193 ≈ 4.21 3:43:21 10614 115902214

47 7 7 3620385165725255777788093397554 ≈ 4.46 8:22:12 11427 149735651

6 10 1789292526793886024349584939752 ≈ 4.40 15:27:04 22351 292928200

50 6 11 113071115010855074515830603921337 ≈ 4.37 18:53:56 30637 401522629

6 10 147019897942999105259582587551602 ≈ 4.39 26:41:00 47378 620962165

Table 1: n random points in a square.

Time in hh:mm:ss.ms RAM in MB # Sub-problems

k n #Triangulations Base dyn-prog sn-paths sweep-algo dyn-prog sn-paths sweep-algo dyn-prog sn-paths sweep-algo

10 28 134806114688321888 ≈ 4.09 1:04.33 39:29:17 33.36 1130 56197 43 8015023 347448787 440822

28 259051751512786147 ≈ 4.18 58.55 32:31:58 13.44 903 41745 21 6303203 266661064 209627

11 33 1360909298406546057232 ≈ 4.36 33:23.12 13:07.23 26618 474 181487896 6186341

33 1862373658387735722566 ≈ 4.41 1:22:42 45:24.99 52344 1866 353976704 15271920

12 35 68231356546945667957547 ≈ 4.49 1:56:47 1:20:25.55 78356 2758 528028609 30094238

34 4657839362065190027715 ≈ 4.33 1:45:20 2:35:44.46 73150 4541 495166380 59490749

13 37 1075218822593378348459037 ≈ 4.46 10:59:33 22268 243201755

37 1374291968080852706936837 ≈ 4.49 16:11:21 31168 408493620

Table 2: n random points having k =
⌈

n

3

⌉

onion layers.

Time in hh:mm:ss.ms RAM in MB # Sub-problems

n h #Triangulations Base dyn-prog sn-paths sweep-algo dyn-prog sn-paths sweep-algo dyn-prog sn-paths sweep-algo

30 10 161014656152655441 ≈ 3.74 20.18 55.77 7.18 303 33 25 2050514 215732 139697

10 312513373686594183 ≈ 3.82 1:07.72 1:09.17 16.46 1160 38 34 7879754 246657 344201

33 11 32155601714553665796 ≈ 3.90 3:50.96 2:19.19 3:02.25 2762 62 293 18992928 405580 2178760

11 68598010833407738067 ≈ 3.99 58.43 2:30.94 2:21.51 857 62 265 5812991 410357 1725109

37 12 9334947679230323509429 ≈ 3.92 1:53.60 3:43.51 9:47.13 1521 90 395 10027300 575255 5144450

12 31113068813012076443512 ≈ 4.05 3:20.41 4:42.24 11:19.98 2465 97 664 16250100 626274 7229246

40 14 2642143054680217856074126 ≈ 4.07 18:12.16 8:10.26 31:33.81 12557 131 1601 82635240 866278 17458086

15 2903778262295075928823011 ≈ 4.08 7:01.40 9:50.98 1:02:46.86 4325 149 3586 28333612 982791 39139805

43 14 452371697808162396583055656 ≈ 4.16 1:34:48 21:39.66 1:50:7.77 53263 243 5008 347603518 1604269 54673756

14 461550214764369881018564051 ≈ 4.16 19:25.53 2:56:09.84 242 8612 1591423 94039067

47 16 157759710540671985436621922639 ≈ 4.18 32:46.68 10:02:04 363 17507 2287764 229438083

15 341037585238678346710372748758 ≈ 4.24 39:33.42 5:32:04 420 8971 2720786 117544183

50 16 54782168649020627430413001433261 ≈ 4.31 1:06:53 57:16:32 606 71609 3631525 938562001

16 158997592723683977758501079915910 ≈ 4.40 1:07:19 30:07:44 553 46872 3998798 614328639

Table 3: n random points on three concentric circles, each having ≈ n

3
points.
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